Distributions and characterizations associated with a random walk
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 24-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we discuss some properties of the distribution and density of the random direction walk after n steps. We further calculate moments of the random walk and propose some characterizations of its distribution. We illustrate our results by tables and graphs.
@article{ZNSL_2021_501_a2,
     author = {M. Ahsanullah and V. B. Nevzorov and A. V. Stepanov},
     title = {Distributions and characterizations associated with a random walk},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {24--35},
     year = {2021},
     volume = {501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a2/}
}
TY  - JOUR
AU  - M. Ahsanullah
AU  - V. B. Nevzorov
AU  - A. V. Stepanov
TI  - Distributions and characterizations associated with a random walk
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 24
EP  - 35
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a2/
LA  - en
ID  - ZNSL_2021_501_a2
ER  - 
%0 Journal Article
%A M. Ahsanullah
%A V. B. Nevzorov
%A A. V. Stepanov
%T Distributions and characterizations associated with a random walk
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 24-35
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a2/
%G en
%F ZNSL_2021_501_a2
M. Ahsanullah; V. B. Nevzorov; A. V. Stepanov. Distributions and characterizations associated with a random walk. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 24-35. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a2/

[1] M. Ahsanullah, V. M. Nevzorov, Ordered random variables, Nova Science Publishers Inc, New York, USA, 2001 | Zbl

[2] M. Ahsanullah, “Some characterizations of Pearson's two unequal step random walk”, Afrika Statistika, 15:1 (2020), 2263–2273 | DOI | MR | Zbl

[3] J. M. Borwein, A. Straub, J. Wan, W. C. Zudilin, “Densities of short uniform random walks”, Canadian J. Math., 64:5 (2012), 961–990 | DOI | MR | Zbl

[4] J. C. Kluyver, “A local probability problem”, Royal Netherlands Academy of Arts and sciences, 81 (1905), 341–350

[5] Lord Rayleigh, “The problem of random walk”, Nature, 72 (1905), 318

[6] K. Pearson, “The problem of the random walk”, Nature, 72 (1905), 294 | DOI

[7] K. Y. Volkova, M. S. Karakulov, Y. Y. Nikitin, “Goodness of fit tests based on the characterization of uniformity by the ratio of order statistics and their efficiencies”, POMI, 466 (2017), 67–80