@article{ZNSL_2021_501_a19,
author = {Yu. V. Yakubovich and O. V. Rusakov},
title = {On spectral properties of stationary random processes connected by a special random time change},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {315--334},
year = {2021},
volume = {501},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/}
}
TY - JOUR AU - Yu. V. Yakubovich AU - O. V. Rusakov TI - On spectral properties of stationary random processes connected by a special random time change JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 315 EP - 334 VL - 501 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/ LA - ru ID - ZNSL_2021_501_a19 ER -
Yu. V. Yakubovich; O. V. Rusakov. On spectral properties of stationary random processes connected by a special random time change. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 315-334. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/
[1] S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley, 1955 | Zbl
[2] K. Buchak, L. Sakhno, “Properties of Poisson processes directed by compound Poisson-Gamma subordinators”, Modern Stoch. Theory Appl., 5:2 (2018), 167–189 | DOI | MR | Zbl
[3] R. Garra, E. Orsingher, M. Scavino, “Some probabilistic properties of fractional point processes”, Stoch. Anal. Appl., 35:4 (2017), 701–718 | DOI | MR | Zbl
[4] N. Gupta, A. Kumar, N. Leonenko, “Tempered fractional Poisson processes and fractional equations with $Z$-transform”, Stoch. Anal. Appl., 38:5 (2020), 939–957 | DOI | MR | Zbl
[5] E. Orsingher, F. Polito, “The space-fractional Poisson process”, Statist. Probab. Lett., 82 (2012), 852–858 | DOI | MR | Zbl
[6] E. Orsingher, B. Toaldo, “Counting processes with Bernštein intertimes and random jumps”, J. Appl. Probab., 52:4 (2015), 1028–1044 | DOI | MR | Zbl
[7] M. B. Priestley, Spectral Analysis and Time Series, v. 1, Univariate Series, Academic Press, London, 1981 | Zbl
[8] O. V. Rusakov, Yu. V. Yakubovich, Poisson processes directed by subordinators, stuttering Poisson and pseudo-Poisson processes, with applications to actuarial mathematics, to appear
[9] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999
[10] Yu. Yakubovich, “A simple proof of the Levy-Khintchine formula for subordinators”, Statist. Probab. Lett., 176 (2021) | DOI | Zbl
[11] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 408 pp.
[12] Dzh. Kingman, Puassonovskie protsessy, Izd-vo MTsNMO, M., 2007, 133 pp.
[13] O. V. Rusakov, “Otnositelnaya kompaktnost summ nezavisimykh odinakovo raspredelennykh psevdopuassonovskikh protsessov v prostranstve Skorokhoda”, Zap. nauchn. sem. POMI, 442, 2015, 122–132
[14] O. V. Rusakov, “Psevdo-puassonovskie protsessy so stokhasticheskoi intensivnostyu i klass protsessov, obobschayuschikh protsess Ornshteina–Ulenbeka”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 4:2 (2017), 247–257 | Zbl
[15] O. V. Rusakov, Yu. V. Yakubovich, M. B. Laskin, “Stokhasticheskaya model informatsionnykh kanalov so sluchainoi intensivnostyu i sluchainoi nagruzkoi, osnovannaya na sluchainykh protsessakh psevdo-puassonovskogo tipa”, Primenenie tekhnologii virtualnoi realnosti i smezhnykh informatsionnykh sistem v mezhdistsiplinarnykh zadachakh, FIT-M 2020, Sbornik tezisov mezhdunarodnoi nauchnoi konferentsii, 2020, 220–225
[16] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967, 702 pp.
[17] A. N. Shiryaev, Veroyatnost–2, Izd-vo MTsNMO, M., 2007, 416 pp.