On spectral properties of stationary random processes connected by a special random time change
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 315-334
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider three independent objects: a two-sided stationary random sequence $\boldsymbol{\xi} := (\ldots, \xi_{-1}, \xi_0, \xi_{1}, \ldots)$ with zero mean and finite variance, a standard Poisson process $\Pi$ and a subordinator $S$, that is a non-decreasing Lévy process. By means of reflection about zero we extend $\Pi$ and $S$ to the negative semi-axis and define a random time change $\Pi(S(t))$, $t\in\mathbb{R}$. Then we define a so-called PSI-process $\psi(t) := \xi_{\Pi(S(t))}$, $t\in\mathbb{R}$, which is wide-sense stationary. Notice that PSI-processes generalize pseudo-Poisson processes. The main aim of the paper is to express spectral properties of the process $\psi$ in terms of spectral characteristics of the sequence $\xi$ and the Lévy measure of the subordinator $S$. Using complex analytic techniques we derive a general formula for the spectral measure $G$ of the process $\psi$. We also determine exact spectral characteristics of $\psi$ for the following examples of $\boldsymbol{\xi}$: almost periodic sequence; finite order moving average; finite order autoregression. These results can find their applications in all areas where $L^2$-theory of stationary processes is used.
			
            
            
            
          
        
      @article{ZNSL_2021_501_a19,
     author = {Yu. V. Yakubovich and O. V. Rusakov},
     title = {On spectral properties of stationary random processes connected by a special random time change},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {315--334},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Yakubovich AU - O. V. Rusakov TI - On spectral properties of stationary random processes connected by a special random time change JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 315 EP - 334 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/ LA - ru ID - ZNSL_2021_501_a19 ER -
%0 Journal Article %A Yu. V. Yakubovich %A O. V. Rusakov %T On spectral properties of stationary random processes connected by a special random time change %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 315-334 %V 501 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/ %G ru %F ZNSL_2021_501_a19
Yu. V. Yakubovich; O. V. Rusakov. On spectral properties of stationary random processes connected by a special random time change. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 315-334. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/