On spectral properties of stationary random processes connected by a special random time change
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 315-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider three independent objects: a two-sided stationary random sequence $\boldsymbol{\xi} := (\ldots, \xi_{-1}, \xi_0, \xi_{1}, \ldots)$ with zero mean and finite variance, a standard Poisson process $\Pi$ and a subordinator $S$, that is a non-decreasing Lévy process. By means of reflection about zero we extend $\Pi$ and $S$ to the negative semi-axis and define a random time change $\Pi(S(t))$, $t\in\mathbb{R}$. Then we define a so-called PSI-process $\psi(t) := \xi_{\Pi(S(t))}$, $t\in\mathbb{R}$, which is wide-sense stationary. Notice that PSI-processes generalize pseudo-Poisson processes. The main aim of the paper is to express spectral properties of the process $\psi$ in terms of spectral characteristics of the sequence $\xi$ and the Lévy measure of the subordinator $S$. Using complex analytic techniques we derive a general formula for the spectral measure $G$ of the process $\psi$. We also determine exact spectral characteristics of $\psi$ for the following examples of $\boldsymbol{\xi}$: almost periodic sequence; finite order moving average; finite order autoregression. These results can find their applications in all areas where $L^2$-theory of stationary processes is used.
@article{ZNSL_2021_501_a19,
     author = {Yu. V. Yakubovich and O. V. Rusakov},
     title = {On spectral properties of stationary random processes connected by a special random time change},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {315--334},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/}
}
TY  - JOUR
AU  - Yu. V. Yakubovich
AU  - O. V. Rusakov
TI  - On spectral properties of stationary random processes connected by a special random time change
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 315
EP  - 334
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/
LA  - ru
ID  - ZNSL_2021_501_a19
ER  - 
%0 Journal Article
%A Yu. V. Yakubovich
%A O. V. Rusakov
%T On spectral properties of stationary random processes connected by a special random time change
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 315-334
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/
%G ru
%F ZNSL_2021_501_a19
Yu. V. Yakubovich; O. V. Rusakov. On spectral properties of stationary random processes connected by a special random time change. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 315-334. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a19/

[1] S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley, 1955 | Zbl

[2] K. Buchak, L. Sakhno, “Properties of Poisson processes directed by compound Poisson-Gamma subordinators”, Modern Stoch. Theory Appl., 5:2 (2018), 167–189 | DOI | MR | Zbl

[3] R. Garra, E. Orsingher, M. Scavino, “Some probabilistic properties of fractional point processes”, Stoch. Anal. Appl., 35:4 (2017), 701–718 | DOI | MR | Zbl

[4] N. Gupta, A. Kumar, N. Leonenko, “Tempered fractional Poisson processes and fractional equations with $Z$-transform”, Stoch. Anal. Appl., 38:5 (2020), 939–957 | DOI | MR | Zbl

[5] E. Orsingher, F. Polito, “The space-fractional Poisson process”, Statist. Probab. Lett., 82 (2012), 852–858 | DOI | MR | Zbl

[6] E. Orsingher, B. Toaldo, “Counting processes with Bernštein intertimes and random jumps”, J. Appl. Probab., 52:4 (2015), 1028–1044 | DOI | MR | Zbl

[7] M. B. Priestley, Spectral Analysis and Time Series, v. 1, Univariate Series, Academic Press, London, 1981 | Zbl

[8] O. V. Rusakov, Yu. V. Yakubovich, Poisson processes directed by subordinators, stuttering Poisson and pseudo-Poisson processes, with applications to actuarial mathematics, to appear

[9] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999

[10] Yu. Yakubovich, “A simple proof of the Levy-Khintchine formula for subordinators”, Statist. Probab. Lett., 176 (2021) | DOI | Zbl

[11] A. V. Bulinskii, A. N. Shiryaev, Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 408 pp.

[12] Dzh. Kingman, Puassonovskie protsessy, Izd-vo MTsNMO, M., 2007, 133 pp.

[13] O. V. Rusakov, “Otnositelnaya kompaktnost summ nezavisimykh odinakovo raspredelennykh psevdopuassonovskikh protsessov v prostranstve Skorokhoda”, Zap. nauchn. sem. POMI, 442, 2015, 122–132

[14] O. V. Rusakov, “Psevdo-puassonovskie protsessy so stokhasticheskoi intensivnostyu i klass protsessov, obobschayuschikh protsess Ornshteina–Ulenbeka”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 4:2 (2017), 247–257 | Zbl

[15] O. V. Rusakov, Yu. V. Yakubovich, M. B. Laskin, “Stokhasticheskaya model informatsionnykh kanalov so sluchainoi intensivnostyu i sluchainoi nagruzkoi, osnovannaya na sluchainykh protsessakh psevdo-puassonovskogo tipa”, Primenenie tekhnologii virtualnoi realnosti i smezhnykh informatsionnykh sistem v mezhdistsiplinarnykh zadachakh, FIT-M 2020, Sbornik tezisov mezhdunarodnoi nauchnoi konferentsii, 2020, 220–225

[16] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1967, 702 pp.

[17] A. N. Shiryaev, Veroyatnost–2, Izd-vo MTsNMO, M., 2007, 416 pp.