Bahadur efficiencies of the Epps–Pulley test for normality
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 302-314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The test for normality suggested by Epps and Pulley [9] is a serious competitor to tests based on the empirical distribution function. In contrast to the latter procedures, it has been generalized to obtain a genuine affine invariant and universally consistent test for normality in any dimension. We obtain approximate Bahadur efficiencies for the test of Epps and Pulley, thus complementing recent results of Milos̆ević et al. (see [15]). For certain values of a tuning parameter that is inherent in the Epps–Pulley test, this test outperforms each of its competitors considered in [15], over the whole range of six close alternatives to normality.
@article{ZNSL_2021_501_a18,
     author = {B. Ebner and N. Henze},
     title = {Bahadur efficiencies of the {Epps{\textendash}Pulley} test for normality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {302--314},
     year = {2021},
     volume = {501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a18/}
}
TY  - JOUR
AU  - B. Ebner
AU  - N. Henze
TI  - Bahadur efficiencies of the Epps–Pulley test for normality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 302
EP  - 314
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a18/
LA  - en
ID  - ZNSL_2021_501_a18
ER  - 
%0 Journal Article
%A B. Ebner
%A N. Henze
%T Bahadur efficiencies of the Epps–Pulley test for normality
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 302-314
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a18/
%G en
%F ZNSL_2021_501_a18
B. Ebner; N. Henze. Bahadur efficiencies of the Epps–Pulley test for normality. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 302-314. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a18/

[1] R. Bahadur, “Rates of convergence of estimates and test statictics”, Ann. Math. Statist., 38:2 (1967), 303–324 | DOI | MR | Zbl

[2] C. T. H. Baker, The numerical treatment of integral equations, Oxford University Press, 1977 | Zbl

[3] L. Baringhaus, R. Danschke, N. Hense, “Recent and classical tests for normality – a comparative study”, Comm. Statistics, Simulation and Computation, 18 (1989), 363–379 | DOI | MR | Zbl

[4] L. Baringhaus, B. Ebner, N. Hense, “The limit distribution of weighted $L^2$-goodness-of-fit statictics under fixed alternatives, with applications”, Ann. of the Institute of Statist. Math., 69:5 (2017), 969–995 | DOI | MR | Zbl

[5] L. Baringhaus, N. Hense, “A consistent test for multivariate normality based on the empirical characteristic function”, Metrika, 35:1 (1988), 39–348 | DOI

[6] S. Csörgó, “Consistency of some tests for multivariate normality”, Metrika, 36 (1989), 107–116 | DOI | MR | Zbl

[7] B. Ebner, N. Henze, “Tests for multivariate normality – a critical review with emphasis on weighted $L^2$-statictics”, TEST, 29:4 (2020), 845–892 | DOI | MR | Zbl

[8] B. Ebner, N. Henze, Y. Y. Nikitin, “Integral distribution-free statistics of $L_p$-type and their asymptotic comparison”, Computational Statistics Data Analysis, 53:9 (2009), 3426–3438 | DOI | MR | Zbl

[9] T. W. Epps, L. B. Pulley, “A test for normality based on the empirical characteristic function”, Biometrika, 70:3 (1983), 723–726 | DOI | MR | Zbl

[10] N. Henze, Y. Y. Nikitin, “A new approach to goodness-of-fit testing based on the integrated empirical process”, J Nonparametric Statist., 12:3 (2000), 391–416 | DOI | MR | Zbl

[11] N. Henze, Y. Y. Nikitin, “Watson-type goodness-of-fit test based on the integrated empirical process”, Mathematical Methods of Statist., 11:2 (2002), 183–2002 | MR | Zbl

[12] N. Henze, T. Wagner, “A new approach to the BHEP tests for multivariate normality”, J. Multivariate Anal., 62:1 (1997), 1–23 | DOI | MR | Zbl

[13] V. Koltchinskii, E. Giné, “Random matrix appriximation of spectra of integral operators”, Bernoulli, 6:1 (2000), 113–167 | DOI | MR | Zbl

[14] C. Ley, D. Paindaveine, “Le Cam optimal tests for symmetry against Ferreira and Steel's general skewed distributions”, J. Nonparametric Statist., 21:8 (2009), 943–967 | DOI | Zbl

[15] B. Milošević, Y. Y. Nikitin, M. Obradović, Bahadur efficiency of EDF based normality tests when parametres are estimated, 2021, arXiv: 2106.07437

[16] Y. Nikitin, Asymptotic Efficiency of Nonparametric Test, Cambridge university Press, 1995

[17] Y. Y. Nikitin, I. Peaucelle, “Efficiency and local optimality of nonparametric tests based on $U$ and $V$-statistic”, METRON, 62:2 (2004), 185–2000 | MR

[18] Y. Y. Nikitin, A. V. Tchirina, “Lilliefors test for exponentiallity: Large deviations, asymptotic efficiency, and conditions of local optimality”, Math. Methods of Statistics, 16:1 (2007), 16–24 | DOI | MR | Zbl

[19] R. Core Team R, A Language and Environment for Statist. Computing, R. Foundation for Statistical Computing, Vienna, Austria, 2021

[20] C. Rasmussen, K. Christopher, Gaussian Processes for Machine Learning, MIT Press, 2006 | Zbl

[21] V. M. Zolotarev, “Concerning a certain probability problem”, Theory of Probability and its Applications, 6:2 (1961), 201–204 | DOI