@article{ZNSL_2021_501_a18,
author = {B. Ebner and N. Henze},
title = {Bahadur efficiencies of the {Epps{\textendash}Pulley} test for normality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {302--314},
year = {2021},
volume = {501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a18/}
}
B. Ebner; N. Henze. Bahadur efficiencies of the Epps–Pulley test for normality. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 302-314. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a18/
[1] R. Bahadur, “Rates of convergence of estimates and test statictics”, Ann. Math. Statist., 38:2 (1967), 303–324 | DOI | MR | Zbl
[2] C. T. H. Baker, The numerical treatment of integral equations, Oxford University Press, 1977 | Zbl
[3] L. Baringhaus, R. Danschke, N. Hense, “Recent and classical tests for normality – a comparative study”, Comm. Statistics, Simulation and Computation, 18 (1989), 363–379 | DOI | MR | Zbl
[4] L. Baringhaus, B. Ebner, N. Hense, “The limit distribution of weighted $L^2$-goodness-of-fit statictics under fixed alternatives, with applications”, Ann. of the Institute of Statist. Math., 69:5 (2017), 969–995 | DOI | MR | Zbl
[5] L. Baringhaus, N. Hense, “A consistent test for multivariate normality based on the empirical characteristic function”, Metrika, 35:1 (1988), 39–348 | DOI
[6] S. Csörgó, “Consistency of some tests for multivariate normality”, Metrika, 36 (1989), 107–116 | DOI | MR | Zbl
[7] B. Ebner, N. Henze, “Tests for multivariate normality – a critical review with emphasis on weighted $L^2$-statictics”, TEST, 29:4 (2020), 845–892 | DOI | MR | Zbl
[8] B. Ebner, N. Henze, Y. Y. Nikitin, “Integral distribution-free statistics of $L_p$-type and their asymptotic comparison”, Computational Statistics Data Analysis, 53:9 (2009), 3426–3438 | DOI | MR | Zbl
[9] T. W. Epps, L. B. Pulley, “A test for normality based on the empirical characteristic function”, Biometrika, 70:3 (1983), 723–726 | DOI | MR | Zbl
[10] N. Henze, Y. Y. Nikitin, “A new approach to goodness-of-fit testing based on the integrated empirical process”, J Nonparametric Statist., 12:3 (2000), 391–416 | DOI | MR | Zbl
[11] N. Henze, Y. Y. Nikitin, “Watson-type goodness-of-fit test based on the integrated empirical process”, Mathematical Methods of Statist., 11:2 (2002), 183–2002 | MR | Zbl
[12] N. Henze, T. Wagner, “A new approach to the BHEP tests for multivariate normality”, J. Multivariate Anal., 62:1 (1997), 1–23 | DOI | MR | Zbl
[13] V. Koltchinskii, E. Giné, “Random matrix appriximation of spectra of integral operators”, Bernoulli, 6:1 (2000), 113–167 | DOI | MR | Zbl
[14] C. Ley, D. Paindaveine, “Le Cam optimal tests for symmetry against Ferreira and Steel's general skewed distributions”, J. Nonparametric Statist., 21:8 (2009), 943–967 | DOI | Zbl
[15] B. Milošević, Y. Y. Nikitin, M. Obradović, Bahadur efficiency of EDF based normality tests when parametres are estimated, 2021, arXiv: 2106.07437
[16] Y. Nikitin, Asymptotic Efficiency of Nonparametric Test, Cambridge university Press, 1995
[17] Y. Y. Nikitin, I. Peaucelle, “Efficiency and local optimality of nonparametric tests based on $U$ and $V$-statistic”, METRON, 62:2 (2004), 185–2000 | MR
[18] Y. Y. Nikitin, A. V. Tchirina, “Lilliefors test for exponentiallity: Large deviations, asymptotic efficiency, and conditions of local optimality”, Math. Methods of Statistics, 16:1 (2007), 16–24 | DOI | MR | Zbl
[19] R. Core Team R, A Language and Environment for Statist. Computing, R. Foundation for Statistical Computing, Vienna, Austria, 2021
[20] C. Rasmussen, K. Christopher, Gaussian Processes for Machine Learning, MIT Press, 2006 | Zbl
[21] V. M. Zolotarev, “Concerning a certain probability problem”, Theory of Probability and its Applications, 6:2 (1961), 201–204 | DOI