Voir la notice du chapitre de livre
@article{ZNSL_2021_501_a17,
author = {E. N. Simarova},
title = {Extremal random beta polytopes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {276--301},
year = {2021},
volume = {501},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a17/}
}
E. N. Simarova. Extremal random beta polytopes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 276-301. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a17/
[1] A. D. Barbour, L. Holst, S. Janson, Poisson Approximation, Oxford University Press, London, 1992 | Zbl
[2] J. Berman, K. Hanes, “Volumes of polyhedra inscribed in the unit sphere in $E^3$”, Mathematische Annalen, 188:1 (1970), 78–84 | DOI | MR | Zbl
[3] P. R. Halmos, “The theory of unbiased estimation”, Ann. Math. Statist., 17 (1946), 34–43 | DOI | Zbl
[4] N. Henze, T. Klein, “The limit distribution of the largest interpoint distance from a symmetric Kotz sample”, J. Multivariate Anal., 57 (1996), 228–239 | DOI | MR | Zbl
[5] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | Zbl
[6] Á. Horváth, Z. Lángi, “Maximum volume polytopes inscribed in the unit sphere”, Monatshefte für Mathematik, 281:2 (2016), 341–354
[7] S. R. Jammalamadaka, S. Janson, “Asymptotic distribution of the maximum interpoint distance in a sample of random vectors with a spherically symmetric distribution”, Ann. Appl. Probab., 25:6 (2015), 3571–3591 | DOI | MR | Zbl
[8] Z. Kabluchko, “Angles of random simplices and face numbers of random polytopes”, Adv. Math., 380 (2021), 107612 | DOI | Zbl
[9] Z. Kabluchko, D. Temesvari, C. Thäle, “Expected intrinsic volumes and facet numbers of random beta-polytopes”, Math. Nachr., 292 (2019), 79–105 | DOI | MR | Zbl
[10] Z. Kabluchko, C. Thäle, D. Zaporozhets, “Beta polytopes and Poisson polyhedra: f-vectors and angles”, Adv. Math., 374 (2020), 107333 | DOI | MR | Zbl
[11] E. V. Koroleva, Ya. Yu. Nikitin, “$U$-max-statistics and limit theorems for perimeters and areas of random polygons”, J. Multivariate Anal., 127 (2014), 99–111 | DOI
[12] W. Lao, Some weak limit laws for the diameter of random point sets in bounded regions, Ph.D. Thesis, Karlsruhe, 2010
[13] W. Lao, M. Mayer, “$U$-max-statistics”, J. Multivariate Anal., 99 (2008), 2039–2052 | DOI | MR | Zbl
[14] A. J. Lee, $U$-statistics: Theory and Practice, Routledge, 2019
[15] P. C. Matthews, A. L. Rukhin, “Asymptotic distribution of the normal sample range”, Ann. Appl. Probab., 3 (1993), 454–466 | DOI | MR
[16] M. Mayer, Random Diameters and Other $U$-max-Statistics, Ph.D. Thesis, Bern University, 2008 | Zbl
[17] M. Mayer, I. Molchanov, “Limit theorems for the diameter of a random sample in the unit ball”, Extremes, 10 (2007), 151–174 | DOI | MR
[18] Ya. Yu. Nikitin, T. A. Polevaya, “Predelnye teoremy dlya ploschadei i perimetrov sluchainykh vpisannykh i opisannykh mnogougolnikov”, Zap. nauchn. semin. POMI, 486, 2019, 200–213
[19] Ya. Yu. Nikitin, E. N. Simarova, Generalized Limit Theorems For U-max Statistics, preprint
[20] F. B. Silverman, T. Brown, “Short distances, flat triangles, and Poisson limits”, J. Appl. Probab., 15 (1978), 815–825 | DOI | MR | Zbl
[21] E. N. Simarova, “Predelnye teoremy dlya obobschennykh perimetrov sluchainykh vpisannykh mnogougolnikov. I”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 7 (65):4 (2020), 678–687 | MR | Zbl
[22] E. N. Simarova, “Predelnye teoremy dlya obobschennykh perimetrov sluchainykh vpisannykh mnogougolnikov. II”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 8 (66):1 (2021), 78–85 | Zbl