On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 259-275

Voir la notice de l'article provenant de la source Math-Net.Ru

In the note we present the conditions under which relations of the type $$ \lim\limits_{\varepsilon\searrow 0}\left(\sum\limits_{n\ge 1} r(n) \mathbf{P}(Y_\alpha\ge f(\varepsilon g(n))) - \nu(\varepsilon) \right) = C $$ hold, where a random variable $Y_\alpha$ has a stable distribution, $C$ is a constant, and non-negative functions $r$, $f$ and $g$ satisfy certain conditions. The obtained results allow to make more precise and to complement results, related to the convergence rate in the so called “exact asymptotics”.
@article{ZNSL_2021_501_a16,
     author = {L. V. Rozovsky},
     title = {On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/}
}
TY  - JOUR
AU  - L. V. Rozovsky
TI  - On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 259
EP  - 275
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/
LA  - ru
ID  - ZNSL_2021_501_a16
ER  - 
%0 Journal Article
%A L. V. Rozovsky
%T On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 259-275
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/
%G ru
%F ZNSL_2021_501_a16
L. V. Rozovsky. On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 259-275. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/