On the convergence rate in “the exact asymptotics” for random variables with a stable distribution
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 259-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the note we present the conditions under which relations of the type $$ \lim\limits_{\varepsilon\searrow 0}\left(\sum\limits_{n\ge 1} r(n) \mathbf{P}(Y_\alpha\ge f(\varepsilon g(n))) - \nu(\varepsilon) \right) = C $$ hold, where a random variable $Y_\alpha$ has a stable distribution, $C$ is a constant, and non-negative functions $r$, $f$ and $g$ satisfy certain conditions. The obtained results allow to make more precise and to complement results, related to the convergence rate in the so called “exact asymptotics”.
@article{ZNSL_2021_501_a16,
     author = {L. V. Rozovsky},
     title = {On the convergence rate in {\textquotedblleft}the exact asymptotics{\textquotedblright} for random variables with a stable distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--275},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/}
}
TY  - JOUR
AU  - L. V. Rozovsky
TI  - On the convergence rate in “the exact asymptotics” for random variables with a stable distribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 259
EP  - 275
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/
LA  - ru
ID  - ZNSL_2021_501_a16
ER  - 
%0 Journal Article
%A L. V. Rozovsky
%T On the convergence rate in “the exact asymptotics” for random variables with a stable distribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 259-275
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/
%G ru
%F ZNSL_2021_501_a16
L. V. Rozovsky. On the convergence rate in “the exact asymptotics” for random variables with a stable distribution. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 259-275. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/

[1] L. V. Rozovskii, “Nekotorye predelnye teoremy dlya bolshikh uklonenii summ nezavisimykh sluchainykh velichin s obschei funktsiei raspredeleniya iz oblasti prityazheniya ustoichivogo zakona”, Zap. nauchn. semin. POMI, 495, 2020, 250–266

[2] L. V. Rozovsky, “One more on the convergence rates in precise asymptotics”, Statist. Probab. Lett., 171 (2021) | DOI | MR | Zbl

[3] A. Gut, J. Steinebach, “Convergence rates in precise asymptotics”, J. Math. Anal. Appl., 390 (2012), 1–14 www2.math.uu.se/ãllan/90correction.pdf | DOI | MR | Zbl

[4] A. Gut, J. Steinebach, “Convergence rates in precise asymptotics II”, Ann. Univ. Sci. Budapest. Sect. Comput., 39 (2013), 95–110 | MR | Zbl

[5] A. Gut, J. Steinebach, “Precise asymptotics — a general approach”, Acta Math. Hung., 138:4 (2013), 365–385 | DOI | Zbl

[6] B. A. Lifshits, “O tochnosti approksimatsii v tsentralnoi predelnoi teoreme”, Teoriya veroyatn. i ee primen., 21:1 (1976), 107–122 | MR | Zbl

[7] O. I. Klesov, “On the convergence rate in a theorem of Heyde”, Theory Probab. Math. Stat., 49 (1994), 83–87

[8] J. Dubinskaite, “O tochnosti priblizheniya summ nezavisimykh sluchainykh velichin ustoichivym raspredeleniem”, Litov. matem. sb. (Liet. Mat. Rinkinys), 23:1 (1983), 74–91 | MR | Zbl

[9] V. M. Zolotarev, Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983