On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 259-275
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the note we present the conditions under which relations of the type $$ \lim\limits_{\varepsilon\searrow 0}\left(\sum\limits_{n\ge 1} r(n) \mathbf{P}(Y_\alpha\ge f(\varepsilon g(n))) - \nu(\varepsilon) \right) = C $$ hold, where a random variable $Y_\alpha$ has a stable distribution, $C$ is a constant, and non-negative functions $r$, $f$ and $g$ satisfy certain conditions. The obtained results allow to make more precise and to complement results, related to the convergence rate in the so called “exact asymptotics”.
			
            
            
            
          
        
      @article{ZNSL_2021_501_a16,
     author = {L. V. Rozovsky},
     title = {On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/}
}
                      
                      
                    TY - JOUR AU - L. V. Rozovsky TI - On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 259 EP - 275 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/ LA - ru ID - ZNSL_2021_501_a16 ER -
L. V. Rozovsky. On the convergence rate in ``the exact asymptotics'' for random variables with a stable distribution. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 259-275. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a16/