@article{ZNSL_2021_501_a15,
author = {Yu. P. Petrova},
title = {$L_2$-small ball asymptotics for a family of finite-dimensional perturbations of {Gaussian} functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {236--258},
year = {2021},
volume = {501},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/}
}
TY - JOUR AU - Yu. P. Petrova TI - $L_2$-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 236 EP - 258 VL - 501 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/ LA - ru ID - ZNSL_2021_501_a15 ER -
Yu. P. Petrova. $L_2$-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 236-258. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/
[1] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Probab. Theory and Math. Statist., Proc. VII International Vilnius Conference, 1999, 453–468 | Zbl
[2] W. V. Li, Q. M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic processes: theory and methods, 19 (2001), 533–597 | DOI | Zbl
[3] V. R. Fatalov, “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, Uspekhi matematicheskikh nauk, 58:4 (352) (2003), 89–134 | MR | Zbl
[4] M. A. Lifshits, Bibliography of small deviation probabilities, 2019 https://airtable.com/shrMG0nNxl9SiGxII/tbl7Xj1mZW2VuYurm
[5] G. Sytaya, “O nekotorykh asimptotichekikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, 2:94 (1974), 93–104 | MR | Zbl
[6] I. A. Ibragimov, “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zap. Nauchn. Semin. LOMI, 85, 1979, 75–93 | Zbl
[7] V. M. Zolotarev, “Gaussian measure asymptotic in $L_2$ on a set of centered spheres with radii tending to zero”, 12th Europ. Meeting of Statisticians (Varna, 1979), 254
[8] J. Hoffmann-Jorgensen, L. A. Shepp, R. M. Dudley, “On the lower tail of Gaussian seminorms”, Ann. Probab., 7 (1979), 319–342 | DOI | MR | Zbl
[9] M. A. Lifshits, Lektsii po gaussovskim protsessam, SPb, 2016
[10] T. Dunker, M. A. Lifshits, W. Linde, “Small deviation probabilities of sums of independent random variables”, Progress in Probability, 43 (1998), 59–74 | MR | Zbl
[11] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, J. Theor. Probab., 5:1 (1992), 1–31 | DOI
[12] F. Gao, J. Hannig, F. Torcaso, “Comparison theorems for small deviations of random series”, Electron. J. Probab., 8:21 (2003), 1–17 | MR
[13] A. I. Nazarov, Y. Y. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl
[14] A. I. Nazarov, “Exact small ball asymptotics of Gaussian processes and the spectrum of boundary value problems”, J. Theor. Probab., 22:3 (2009), 640–665 | DOI | Zbl
[15] G. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Transactions of AMS, 9:2 (1908), 219–231 | DOI | Zbl
[16] G. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Transactions of AMS, 9:4 (1908), 373–395 | DOI | Zbl
[17] J. Tamarkin, “Sur quelques points de la theorie des equations differentielles lineaires ordinaires et sur la generalisation de la serie de Fourier”, Rendiconti del Circolo Matematico di Palermo, 34:1 (1912), 345–382 | DOI | Zbl
[18] J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Mathematische Zeitschrift, 27:1 (1928), 1–54 | DOI | MR
[19] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Funktsionalnyi analiz i prilozheniya, 16:4 (1982), 92–93 | MR
[20] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Trudy seminara imeni I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 190–229
[21] P. Chigansky, M. Kleptsyna, D. Marushkevych, On the Karhunen–Loève expansion of Gaussian bridges, 2017, arXiv: 1706.09298
[22] P. Chigansky, M. Kleptsyna, “Exact asymptotics in eigenproblems for fractional Brownian covariance operators”, Stochastic Processes and their Applications,, 128:6 (2018), 2007–2059 | DOI | MR
[23] P. Chigansky, M. Kleptsyna, D. Marushkevych, Exact spectral asymptotics of fractional processes, 2018, arXiv: 1802.09045
[24] F. Gao, W. V. Li, “Logarithmic level comparison for small deviation probabilities”, J. Theor. Probab., 20:1 (2007), 1–23 | DOI
[25] A. I. Nazarov, “Log-level comparison principle for small ball probabilities”, Statist. Probab. Letters, 79:4 (2009), 481–486 | DOI | MR | Zbl
[26] P. Deheuvels, “A Karhunen–Loève expansion for a mean-centered Brownian bridge”, Statist. Probab. Letters, 77:12 (2007), 1190–1200 | DOI | MR | Zbl
[27] A. I. Nazarov, “Ob odnom semeistve preobrazovanii gaussovskikh sluchainykh funktsii”, Teoriya veroyatn. i ee primen., 54:2 (2009), 209–225 | Zbl
[28] M. Kac, J. Kiefer, J. Wolfowitz, “On tests of normality and other tests of goodness of fit based on distance methods”, Ann. Math. Statist., 26:2 (1955), 189–211 | DOI | MR | Zbl
[29] A. I. Nazarov, Yu. P. Petrova, “Asimptotika malykh uklonenii v gilbertovoi norme dlya protsessov Katsa-Kifera-Volfovitsa”, Teoriya veroyatn. i ee primen., 60:3 (2016), 482–505 | Zbl
[30] Yu. P. Petrova, “Tochnaya asimptotika $L_2$-malykh uklonenii dlya nekotorykh protsessov Durbina”, Zap. Nauchn. Sem. POMI, 466, 2017, 211–233 (in Russian)
[31] M. S. Birman, M. Z. Solomyak, Spetralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Uchebnoe posobie, vtoroe izdanie, Izd-vo Lan, Sankt-Peterburg, 2010
[32] E. Titchmarsh, Teoriya funktsii, Nauka. Glav. red. fiz.-mat. lit., 1980
[33] H. Bateman, “A formula for the solving function of a certain integral equation of the second kind”, Messenger Math., 37 (1908), 179–187
[34] S. Sukhatme, “Fredholm determinant of a positive definite kernel of a special type and its application”, Ann. Math. Statist., 1972, 1914–1926 | DOI | MR | Zbl
[35] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, 1950
[36] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, 1977
[37] J. Durbin, “Weak convergence of the sample distribution function when parameters are estimated”, Ann. Statist., 1:2 (1973), 279–290 | DOI | MR | Zbl