$L_2$-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 236-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article we study the small ball probabilities in $L_2$-norm for a family of finite-dimensional perturbations of Gaussian functions. We define three types of perturbations: noncritical, partially critical and critical; and derive small ball asymptotics for the perturbated process in terms of the small ball asymptotics for the original process. The natural examples of such perturbations appear in statistics in the study of empirical processes with estimated parameters (the so-called Durbin's processes). We show that the Durbin's processes are critical perturbations of the Brownian bridge. Under some additional assumptions, general results can be simplified. As an example we find the exact $L_2$-small ball asymptotics for critical perturbations of the Green processes (the processes which covariance function is the Green function of the ordinary differential operator).
@article{ZNSL_2021_501_a15,
     author = {Yu. P. Petrova},
     title = {$L_2$-small ball asymptotics for a family of finite-dimensional perturbations of {Gaussian} functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--258},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/}
}
TY  - JOUR
AU  - Yu. P. Petrova
TI  - $L_2$-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 236
EP  - 258
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/
LA  - ru
ID  - ZNSL_2021_501_a15
ER  - 
%0 Journal Article
%A Yu. P. Petrova
%T $L_2$-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 236-258
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/
%G ru
%F ZNSL_2021_501_a15
Yu. P. Petrova. $L_2$-small ball asymptotics for a family of finite-dimensional perturbations of Gaussian functions. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 236-258. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a15/

[1] M. A. Lifshits, “Asymptotic behavior of small ball probabilities”, Probab. Theory and Math. Statist., Proc. VII International Vilnius Conference, 1999, 453–468 | Zbl

[2] W. V. Li, Q. M. Shao, “Gaussian processes: inequalities, small ball probabilities and applications”, Stochastic processes: theory and methods, 19 (2001), 533–597 | DOI | Zbl

[3] V. R. Fatalov, “Konstanty v asimptotikakh veroyatnostei malykh uklonenii dlya gaussovskikh protsessov i polei”, Uspekhi matematicheskikh nauk, 58:4 (352) (2003), 89–134 | MR | Zbl

[4] M. A. Lifshits, Bibliography of small deviation probabilities, 2019 https://airtable.com/shrMG0nNxl9SiGxII/tbl7Xj1mZW2VuYurm

[5] G. Sytaya, “O nekotorykh asimptotichekikh predstavleniyakh gaussovskoi mery v gilbertovom prostranstve”, Teoriya sluchainykh protsessov, 2:94 (1974), 93–104 | MR | Zbl

[6] I. A. Ibragimov, “O veroyatnosti popadaniya gaussova vektora so znacheniyami v gilbertovom prostranstve v sferu malogo radiusa”, Zap. Nauchn. Semin. LOMI, 85, 1979, 75–93 | Zbl

[7] V. M. Zolotarev, “Gaussian measure asymptotic in $L_2$ on a set of centered spheres with radii tending to zero”, 12th Europ. Meeting of Statisticians (Varna, 1979), 254

[8] J. Hoffmann-Jorgensen, L. A. Shepp, R. M. Dudley, “On the lower tail of Gaussian seminorms”, Ann. Probab., 7 (1979), 319–342 | DOI | MR | Zbl

[9] M. A. Lifshits, Lektsii po gaussovskim protsessam, SPb, 2016

[10] T. Dunker, M. A. Lifshits, W. Linde, “Small deviation probabilities of sums of independent random variables”, Progress in Probability, 43 (1998), 59–74 | MR | Zbl

[11] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, J. Theor. Probab., 5:1 (1992), 1–31 | DOI

[12] F. Gao, J. Hannig, F. Torcaso, “Comparison theorems for small deviations of random series”, Electron. J. Probab., 8:21 (2003), 1–17 | MR

[13] A. I. Nazarov, Y. Y. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl

[14] A. I. Nazarov, “Exact small ball asymptotics of Gaussian processes and the spectrum of boundary value problems”, J. Theor. Probab., 22:3 (2009), 640–665 | DOI | Zbl

[15] G. Birkhoff, “On the asymptotic character of the solutions of certain linear differential equations containing a parameter”, Transactions of AMS, 9:2 (1908), 219–231 | DOI | Zbl

[16] G. Birkhoff, “Boundary value and expansion problems of ordinary linear differential equations”, Transactions of AMS, 9:4 (1908), 373–395 | DOI | Zbl

[17] J. Tamarkin, “Sur quelques points de la theorie des equations differentielles lineaires ordinaires et sur la generalisation de la serie de Fourier”, Rendiconti del Circolo Matematico di Palermo, 34:1 (1912), 345–382 | DOI | Zbl

[18] J. Tamarkin, “Some general problems of the theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Mathematische Zeitschrift, 27:1 (1928), 1–54 | DOI | MR

[19] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Funktsionalnyi analiz i prilozheniya, 16:4 (1982), 92–93 | MR

[20] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Trudy seminara imeni I. G. Petrovskogo, 9, Izd-vo Mosk. un-ta, M., 1983, 190–229

[21] P. Chigansky, M. Kleptsyna, D. Marushkevych, On the Karhunen–Loève expansion of Gaussian bridges, 2017, arXiv: 1706.09298

[22] P. Chigansky, M. Kleptsyna, “Exact asymptotics in eigenproblems for fractional Brownian covariance operators”, Stochastic Processes and their Applications,, 128:6 (2018), 2007–2059 | DOI | MR

[23] P. Chigansky, M. Kleptsyna, D. Marushkevych, Exact spectral asymptotics of fractional processes, 2018, arXiv: 1802.09045

[24] F. Gao, W. V. Li, “Logarithmic level comparison for small deviation probabilities”, J. Theor. Probab., 20:1 (2007), 1–23 | DOI

[25] A. I. Nazarov, “Log-level comparison principle for small ball probabilities”, Statist. Probab. Letters, 79:4 (2009), 481–486 | DOI | MR | Zbl

[26] P. Deheuvels, “A Karhunen–Loève expansion for a mean-centered Brownian bridge”, Statist. Probab. Letters, 77:12 (2007), 1190–1200 | DOI | MR | Zbl

[27] A. I. Nazarov, “Ob odnom semeistve preobrazovanii gaussovskikh sluchainykh funktsii”, Teoriya veroyatn. i ee primen., 54:2 (2009), 209–225 | Zbl

[28] M. Kac, J. Kiefer, J. Wolfowitz, “On tests of normality and other tests of goodness of fit based on distance methods”, Ann. Math. Statist., 26:2 (1955), 189–211 | DOI | MR | Zbl

[29] A. I. Nazarov, Yu. P. Petrova, “Asimptotika malykh uklonenii v gilbertovoi norme dlya protsessov Katsa-Kifera-Volfovitsa”, Teoriya veroyatn. i ee primen., 60:3 (2016), 482–505 | Zbl

[30] Yu. P. Petrova, “Tochnaya asimptotika $L_2$-malykh uklonenii dlya nekotorykh protsessov Durbina”, Zap. Nauchn. Sem. POMI, 466, 2017, 211–233 (in Russian)

[31] M. S. Birman, M. Z. Solomyak, Spetralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Uchebnoe posobie, vtoroe izdanie, Izd-vo Lan, Sankt-Peterburg, 2010

[32] E. Titchmarsh, Teoriya funktsii, Nauka. Glav. red. fiz.-mat. lit., 1980

[33] H. Bateman, “A formula for the solving function of a certain integral equation of the second kind”, Messenger Math., 37 (1908), 179–187

[34] S. Sukhatme, “Fredholm determinant of a positive definite kernel of a special type and its application”, Ann. Math. Statist., 1972, 1914–1926 | DOI | MR | Zbl

[35] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, 1950

[36] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, 1977

[37] J. Durbin, “Weak convergence of the sample distribution function when parameters are estimated”, Ann. Statist., 1:2 (1973), 279–290 | DOI | MR | Zbl