On the available local asymptotic efficiency of some goodness-of-fit criteria
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 218-235
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The concept of local asymptotic Bahadur optimality for a sequence of statistics is well known. The following problem was posed and in many cases solved by Ya.Yu. Nikitin: to describe the class of distributions for which a given sequence of statistics is locally asymptotically optimal against specific alternatives (shift, scale, etc.). However, in some cases this problem has no solution. We propose to consider a modified problem. Its solution gives the value of the available asymptotic efficiency of the corresponding statistics.
			
            
            
            
          
        
      @article{ZNSL_2021_501_a14,
     author = {A. I. Nazarov and A. V. Tchirina},
     title = {On the available local asymptotic efficiency of some goodness-of-fit criteria},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {218--235},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a14/}
}
                      
                      
                    TY - JOUR AU - A. I. Nazarov AU - A. V. Tchirina TI - On the available local asymptotic efficiency of some goodness-of-fit criteria JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 218 EP - 235 VL - 501 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a14/ LA - ru ID - ZNSL_2021_501_a14 ER -
A. I. Nazarov; A. V. Tchirina. On the available local asymptotic efficiency of some goodness-of-fit criteria. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 218-235. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a14/