@article{ZNSL_2021_501_a13,
author = {B. Milo\v{s}evi\'c and Ya. Yu. Nikitin and M. Obradovi\'c},
title = {Bahadur efficiency of {EDF} based normality tests when parameters are estimated},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {203--217},
year = {2021},
volume = {501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/}
}
TY - JOUR AU - B. Milošević AU - Ya. Yu. Nikitin AU - M. Obradović TI - Bahadur efficiency of EDF based normality tests when parameters are estimated JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 203 EP - 217 VL - 501 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/ LA - en ID - ZNSL_2021_501_a13 ER -
B. Milošević; Ya. Yu. Nikitin; M. Obradović. Bahadur efficiency of EDF based normality tests when parameters are estimated. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 203-217. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/
[1] T. W. Anderson, D. A. Darling, “Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes”, Ann. Math. Stat., 23:2 (1952), 193–212 | DOI | Zbl
[2] M. A. Arcones, “On the Bahadur slope of the Lilliefors and the Cramér-von Mises tests of normality”, Lecture Notes-Monograph Series, 51, 2006, 196–206 | DOI | MR | Zbl
[3] R. R. Bahadur, “Stochastic comparison of tests”, Ann. Math. Stat., 31:2 (1960), 276–295 | DOI | Zbl
[4] R. R. Bahadur, “Rates of convergence of estimates and test statistics”, Ann. Math. Stat., 38:2 (1967), 303–324 | DOI | Zbl
[5] P. Billingsley, Convergence of probability measures, John Wiley Sons, 1999
[6] V. Božin, B. Milošević, Ya. Yu. Nikitin, M. Obradović, “New characterization-based symmetry tests”, Bull. Malaysian Math. Sci. Soc., 43:1 (2020), 297–320 | DOI | MR | Zbl
[7] M. Cuparić, B. Milošević, Ya. Yu. Nikitin, M. Obradović, “Some consistent exponentiality tests based on Puri–Rubin and Desu characterizations”, Appl. Math. Prague, 65:3 (2020), 245–255 | DOI | Zbl
[8] D. A. Darling, “The Cramer-Smirnov test in the parametric case”, Ann. Math. Stat., 26:1 (1955), 1–20 | DOI | MR | Zbl
[9] D. A. Darling, “The Kolmogorov-Smirnov, Cramer-von Mises tests”, Ann. Math. Stat., 28:4 (1957), 823–838 | DOI | MR | Zbl
[10] D. A. Darling, “On the asymptotic distribution of Watson's statistic”, Ann. Stat., 11:4 (1983), 1263–1266 | DOI | Zbl
[11] D. A. Darling, “On the supremum of a certain Gaussian process”, Ann. Probab., 11:3 (1983), 803–806 | DOI | MR | Zbl
[12] J. Durbin, “Weak convergence of the sample distribution function when parameters are estimated”, Ann. Stat., 1:2 (1973), 279–290 | DOI | Zbl
[13] N. Henze and T. Wagner, “A new approach to the {BHEP} tests for multivariate normality”, J. Multivar. Annal., 62:1 (1997), 1–23 | DOI | Zbl
[14] H. K. Iverson, R. H. Randles, “The effects on convergence of substituting parameter estimates into U-statistics and other families of statistics”, Probab. Theory Relat. Fields, 81:3 (1989), 453–471 | DOI | Zbl
[15] M. Kac, J. Kiefer, J. Wolfowitz, “On tests of normality and other tests of goodness of fit based on distance methods”, Ann. Math. Stat., 26:2 (1955), 189–211 | DOI | Zbl
[16] E. V. Khmaladze, “Martingale approach in the theory of goodness-of-fit tests”, Theory Probab. its Appl., 26:2 (1982), 240–257 | DOI | Zbl
[17] A. N. Kolmogorov, “Sulla determinazione empirica di una legge di distribuzione”, Giorn. Ist. Ital. Attuari, 4:1 (1933), 83–91
[18] N. H. Kuiper, “Tests concerning random points on a circle”, Proc. Sect. Sci. K. Ned. Akad. Wet. Amst. Series A, 63:1 (1960), 38–47 | Zbl
[19] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown”, J. Am. Stat. Assoc., 62:318 (1967), 399–402 | DOI
[20] H. W. Lilliefors, “On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown”, J. Am. Stat. Assoc., 64:325 (1969), 387–389 | DOI
[21] M. B. Marcus, L. A. Shepp, “Sample behavior of Gaussian processes”, Proc. of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, v. 2, 1972, 423–441 | Zbl
[22] B. Milošević, M. Obradović, “Two-dimensional Kolmogorov-type goodness-of-fit tests based on characterisations and their asymptotic efficiencies”, J. Nonparametr. Stat., 28:2 (2016), 413–427 | DOI | MR | Zbl
[23] Ya. Yu. Nikitin, Asymptotic efficiency of nonparametric tests, Cambridge University Press, 1995 | Zbl
[24] Ya. Yu. Nikitin, “Large deviations of U-empirical Kolmogorov–Smirnov tests and their efficiency”, J. Nonparametr. Stat., 22:5 (2010), 649–668 | DOI | MR | Zbl
[25] Ya. Yu. Nikitin and I. Peaucelle, “Efficiency and local optimality of nonparametric tests based on U- and V-statistics”, Metron, LXII:2 (2004), 185–200 | Zbl
[26] Ya. Yu. Nikitin, E. V. Ponikarov, “Large deviations of Chernoff type for U-and V-statistics”, Dokl. Math., 60:3 (1999), 316–318 | Zbl
[27] Ya. Yu. Nikitin, A. V. Tchirina, “Lilliefors test for exponentiality: large deviations, asymptotic efficiency, and conditions of local optimality”, Math. Methods Stat., 16:1 (2007), 16–24 | DOI | Zbl
[28] R. H. Randles, “On the asymptotic normality of statistics with estimated parameters”, Ann. Stat., 10:2 (1982), 462–474 | DOI | Zbl
[29] F. Rublík, “On optimality of the LR tests in the sense of exact slopes. I. General case”, Kybernetika, 25:1 (1989), 13–14 | MR
[30] M. A. Stephens, “Asymptotic results for goodness-of-fit statistics with unknown parameters”, Ann. Stat., 4:2 (1976), 357–369 | DOI | Zbl
[31] S. Sukhatme, “Fredholm determinant of a positive definite kernel of a special type and its application”, Ann. Math. Stat., 43:6 (1972), 1914–1926 | DOI | MR | Zbl
[32] A. W. Van der Vaart, Asymptotic statistics, v. 3, Cambridge University Press, 2000 | Zbl
[33] G. S. Watson, “Goodness-of-fit tests on a circle”, Biometrika, 48:1/2 (1961), 109–114 | DOI | MR | Zbl
[34] G. S. Watson, “Optimal invariant tests for uniformity”, Studies in Probability and Statistics, Papers in honour of E.J.G. Pitman, ed. E. J. Williams, North-Holland, Amsterdam, 1976, 121–127
[35] V. M. Zolotarev, “Concerning a certain probability problem”, Theory Probab. its Appl., 6:2 (1961), 201–204 | DOI