Bahadur efficiency of EDF based normality tests when parameters are estimated
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 203-217

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some well-known tests based on empirical distribution functions (EDF) with estimated parameters for testing composite normality hypothesis are revisited, and some new results on asymptotic properties are provided. In particular, the approximate Bahadur slopes are obtained – in the case of close alternatives — for the EDF-based tests as well as the likelihood ratio test. The local approximate efficiencies are calculated for several close alternatives. The obtained results could serve as a benchmark for evaluation of the quality of recent and future normality tests.
@article{ZNSL_2021_501_a13,
     author = {B. Milo\v{s}evi\'c and Ya. Yu. Nikitin and M. Obradovi\'c},
     title = {Bahadur efficiency of {EDF} based normality tests when parameters are estimated},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--217},
     publisher = {mathdoc},
     volume = {501},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/}
}
TY  - JOUR
AU  - B. Milošević
AU  - Ya. Yu. Nikitin
AU  - M. Obradović
TI  - Bahadur efficiency of EDF based normality tests when parameters are estimated
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 203
EP  - 217
VL  - 501
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/
LA  - en
ID  - ZNSL_2021_501_a13
ER  - 
%0 Journal Article
%A B. Milošević
%A Ya. Yu. Nikitin
%A M. Obradović
%T Bahadur efficiency of EDF based normality tests when parameters are estimated
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 203-217
%V 501
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/
%G en
%F ZNSL_2021_501_a13
B. Milošević; Ya. Yu. Nikitin; M. Obradović. Bahadur efficiency of EDF based normality tests when parameters are estimated. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 203-217. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a13/