Characterization of probability distributions by the properties of linear forms with random coefficients
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 181-193 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some distributions are characterized both by the property of the identical distribution of linear forms with random coefficients and by the property of independence of these statistics.
@article{ZNSL_2021_501_a11,
     author = {L. B. Klebanov},
     title = {Characterization of probability distributions by the properties of linear forms with random coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {181--193},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a11/}
}
TY  - JOUR
AU  - L. B. Klebanov
TI  - Characterization of probability distributions by the properties of linear forms with random coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 181
EP  - 193
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a11/
LA  - ru
ID  - ZNSL_2021_501_a11
ER  - 
%0 Journal Article
%A L. B. Klebanov
%T Characterization of probability distributions by the properties of linear forms with random coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 181-193
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a11/
%G ru
%F ZNSL_2021_501_a11
L. B. Klebanov. Characterization of probability distributions by the properties of linear forms with random coefficients. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 181-193. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a11/

[1] S. N. Bernshtein, “Ob odnom svoistve, kharakterizuyuschem zakon Gaussa”, Tr. Leningrad. politekhn. in-ta, 3 (1941), 21–22

[2] G. Darmois, “Analyse générale des liaisons stochastiques”, Rev. Inst. Intern. Stat., 30:1 (1953), 2–8 | DOI | MR

[3] V. P. Skitovich, “Ob odnom svoistve normalnogo raspredeleniya”, DAN SSSR, 89:2 (1953), 217–219 | Zbl

[4] S. G. Ghurye, I. Olkin, “A characterization of the multivariate normal distribution”, Ann. Math. Stat., 33:2 (1962), 533–541 | DOI | MR | Zbl

[5] A. A. Zinger, “O kharakterizatsii mnogomernogo normalnogo zakona nezavisimostyu lineinykh statistik”, Teor. veroyatn. i ee primen., 24 (1979), 381–385 | Zbl

[6] I. A. Ibragimov, “O teoreme Skitovicha-Darmua-Ramachandrana”, Teor. veroyatn. i ee primen., 57:3 (2012), 418–426

[7] A. Rukhin, “Ob odnoi teoreme S. N. Bernshteina”, Matem. zametki, 6:3 (1969), 301–307 | Zbl

[8] G. M. Feldman, “Bernstein Gaussian distributions on groups”, Theory Probab. Appl., 31 (1986), 40–49 | DOI

[9] G. M. Feldman, P. Graczyk, “On the Skitovich-Darmois theorem on compact Abelian groups”, J. of Theoret. Probab., 13:3 | DOI

[10] G. M. Feldman, Functional equations and characterization problems on locally compact Abelian groups, EMS Tracts in Mathematics, 5, Zurich. European Mathematical Society (EMS), 2008, 268 pp. | Zbl

[11] A. A. Zinger, Yu. V. Linnik, “Nelineinye statistiki i sluchainye lineinye formy”, Trudy Mat. in-ta im. Steklova AN SSSR, 111, 1970 | Zbl

[12] D. Polya, “Herleitung des Gauss'schen Fehlergesetzes aus einer Funktionalgleichung”, Math. Zeitschrift, 18 (1923), 185–188 | DOI | MR

[13] A. V. Kakosyan, L. B. Klebanov, J. A. Melamed, Characterization of Distributions by the Method of Intensively Monotone Operators, Lect. Notes Math., 1088, Springer–Verlag, 1984, 175 pp. | DOI | MR | Zbl

[14] L. B. Klebanov, A. V. Kakosyan, S. T. Rachev, G. Temnov, “On a Class of Distributions Stable Under Random Summation”, J. Appl. Prob., 49 (2012), 303–318 | DOI | Zbl

[15] R. G. Laha, E. Lukacs, “On a Problem Connected With Quadratic Regression”, Biometrika, 47 (1960), 335–343 | DOI | MR | Zbl

[16] J. Pusz, “A Regression Characterization of the Meisner Hypergeometric Distribution”, Austral. J. Statist., 37:1 (1995), 83–87 | DOI | MR | Zbl

[17] Yu. V. Linnik, Razlozheniya veroyatnostnykh zakonov, Izd-vo Leningr. un-ta, 1960, 263 pp.