On constants in the Kolmogorov–Rogozin and Kesten inequalities in a Hilbert space
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 8-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we refine the values of the absolute constants in the Kolmogorov–Rogozin and Kesten inequalities for the concentration function of the sum of independent random vectors in a Hilbert space.
@article{ZNSL_2021_501_a1,
     author = {S. M. Ananjevskii},
     title = {On constants in the {Kolmogorov{\textendash}Rogozin} and {Kesten} inequalities in a {Hilbert} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--23},
     year = {2021},
     volume = {501},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a1/}
}
TY  - JOUR
AU  - S. M. Ananjevskii
TI  - On constants in the Kolmogorov–Rogozin and Kesten inequalities in a Hilbert space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 8
EP  - 23
VL  - 501
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a1/
LA  - ru
ID  - ZNSL_2021_501_a1
ER  - 
%0 Journal Article
%A S. M. Ananjevskii
%T On constants in the Kolmogorov–Rogozin and Kesten inequalities in a Hilbert space
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 8-23
%V 501
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a1/
%G ru
%F ZNSL_2021_501_a1
S. M. Ananjevskii. On constants in the Kolmogorov–Rogozin and Kesten inequalities in a Hilbert space. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 30, Tome 501 (2021), pp. 8-23. http://geodesic.mathdoc.fr/item/ZNSL_2021_501_a1/

[1] P. Lévy, Théorie de láddition des variables aléatoires, Gautier-Villars, Paris, 1937

[2] A. Kolmogorov, “Sur les propriétés des fonctions de conctytration de M.P.Lévy”, Ann. Inst. Henri Poincaré, 16 (1958), 27–34 | Zbl

[3] B. A. Rogozin, “Ob odnoi otsenke funktsii kontsentratsii”, Teoriya veroyatn. i ee primen., 6 (1961), 103–105

[4] C.-G. Esseen, “On the concentration function of a sum of independent random variables”, Z. Wahrscheinlichkeitstheorie verw, Geb., 9 (1968), 290–308 | DOI | MR | Zbl

[5] H. Kesten, “A sharper form of the Doeblin-Levy-Kolmogorov-Rogozin inequality for concentration functions”, Math. Scand., 25 (1969), 133–144 | DOI | MR | Zbl

[6] A. Yu. Zaitsev, “Otsenka maksimalnoi veroyatnosti v probleme Littlvuda-Offorda”, Zap. nauchn. semin. POMI, 441, 2015, 204–209

[7] V. Khengartner, R. Teodoresku, Funktsii kontsentratsii, Nauka, M., 1980

[8] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972

[9] G. Zigel, “Verkhnie otsenki dlya funktsii kontsentratsii v gilbertovom prostranstve”, Teor. veroyatn. i ee primen., 26 (1981), 335–349 | MR

[10] J. Enger, Bounds for the concentration function of a sum of independent random vectors with a Hilbert space, Thesis, Uppsala Univ. Press, Uppsala, 1975

[11] S. M. Ananevskii, A. L. Miroshnikov, “Lokalnye otsenki funktsii kontsentratsii Levi v mnogomernom i gilbertovom prostranstve”, Zap. nauchn. semin. LOMI AN SSSR, 130, 1983, 6–10 | MR

[12] S. V. Nagaev, S. S. Khodzhabagyan, “Ob otsenke funktsii kontsentratsii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 41 (1996), 655–665 | Zbl

[13] Ya. S. Golikova, “Ob uluchshenii otsenki rasstoyaniya mezhdu raspredeleniyami posledovatelnykh summ nezavisimykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 474, 2018, 118–123

[14] E. L. Maistrenko, “Otsenka absolyutnoi postoyannoi v neravenstve dlya ravnomernogo rasstoyaniya mezhdu raspredeleniyami posledovatelnykh summ nezavisimykh sluchainykh vektorov”, Zap. nauchn. semin. POMI, 454, 2016, 216–219