On spectral sequences for Postnikov towers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 188-203
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we construct a natural spectral sequence corresponding to a Postnikov tower (system) along with a (co)homological functor from a triangulated category. We apply the results to some classical filtrations in the homotopy category $K(A)$. In triangulated categories endowed with weight structures, we constuct weight spectral sequences (as defined by M. V. Bondarko), with some additional properties.
@article{ZNSL_2021_500_a9,
author = {S. V. Shamov},
title = {On spectral sequences for {Postnikov} towers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {188--203},
year = {2021},
volume = {500},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a9/}
}
S. V. Shamov. On spectral sequences for Postnikov towers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 188-203. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a9/
[1] M. V. Bondarko, “On weight complexes, pure functors, and detecting weights”, J. Algebra, 574 (2021), 617–668 | DOI | MR | Zbl
[2] M. V. Bondarko, “Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. K-theory, 6:3 (2010), 387–504 | DOI | MR | Zbl
[3] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry, v. 1, Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988
[4] C.A. Weibel, An introduction to homological algebra, Cambridge University Press, 1994 | Zbl
[5] D. Pauksztello, “Compact cochain objects in triangulated categories and co-t-structures”, Centr. Europ. J. Math., 6:1 (2008), 25–42 | DOI | MR | Zbl