On spectral sequences for Postnikov towers
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 188-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we construct a natural spectral sequence corresponding to a Postnikov tower (system) along with a (co)homological functor from a triangulated category. We apply the results to some classical filtrations in the homotopy category $K(A)$. In triangulated categories endowed with weight structures, we constuct weight spectral sequences (as defined by M. V. Bondarko), with some additional properties.
@article{ZNSL_2021_500_a9,
     author = {S. V. Shamov},
     title = {On spectral sequences for {Postnikov} towers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--203},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a9/}
}
TY  - JOUR
AU  - S. V. Shamov
TI  - On spectral sequences for Postnikov towers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 188
EP  - 203
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a9/
LA  - ru
ID  - ZNSL_2021_500_a9
ER  - 
%0 Journal Article
%A S. V. Shamov
%T On spectral sequences for Postnikov towers
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 188-203
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a9/
%G ru
%F ZNSL_2021_500_a9
S. V. Shamov. On spectral sequences for Postnikov towers. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 188-203. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a9/

[1] M. V. Bondarko, “On weight complexes, pure functors, and detecting weights”, J. Algebra, 574 (2021), 617–668 | DOI | MR | Zbl

[2] M. V. Bondarko, “Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. K-theory, 6:3 (2010), 387–504 | DOI | MR | Zbl

[3] S. I. Gelfand, Yu. I. Manin, Metody gomologicheskoi algebry, v. 1, Vvedenie v teoriyu kogomologii i proizvodnye kategorii, Nauka, M., 1988

[4] C.A. Weibel, An introduction to homological algebra, Cambridge University Press, 1994 | Zbl

[5] D. Pauksztello, “Compact cochain objects in triangulated categories and co-t-structures”, Centr. Europ. J. Math., 6:1 (2008), 25–42 | DOI | MR | Zbl