On generating sets of infinite symmetric group
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 177-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It was shown that in a group of bijections of an infinite set some families of subsets, related to the cardinality of some eigenspaces, are generating. Besides, we derived a criterion for generating by sets of this kind.
@article{ZNSL_2021_500_a8,
     author = {A. V. Semenov and A. Denisova},
     title = {On generating sets of infinite symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {177--187},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a8/}
}
TY  - JOUR
AU  - A. V. Semenov
AU  - A. Denisova
TI  - On generating sets of infinite symmetric group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 177
EP  - 187
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a8/
LA  - ru
ID  - ZNSL_2021_500_a8
ER  - 
%0 Journal Article
%A A. V. Semenov
%A A. Denisova
%T On generating sets of infinite symmetric group
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 177-187
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a8/
%G ru
%F ZNSL_2021_500_a8
A. V. Semenov; A. Denisova. On generating sets of infinite symmetric group. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 177-187. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a8/

[1] G. M. Bergman, “Generating infinite symmetric groups”, Bull. London Math. Soc., 38 (2006), 429–440 | DOI | MR | Zbl

[2] J. D. Dixon, B. M. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Springer, 1988

[3] F. Galvin, “Generating countable sets of permutations”, J. London Math. Soc. (2), 51 (1995), 230–242 | DOI | MR | Zbl

[4] H. Macpherson, P. M. Neumann, “Subgroups of Infinite Symmetric Groups”, J. London Math. Soc., 1990, 64–84 | DOI | Zbl

[5] G. Moran, “Conjugacy classes whose square is an infinite symmetric group”, Trans. Amer. Math. Soc., 316 (1989), 493–522 | DOI | MR | Zbl

[6] M. Droste, W. Ch. Holland, “Generating automorphism groups of chains”, Forum Mathematicum, 17:4 (2005), 699–710 | DOI | MR | Zbl

[7] M. Droste, “Classes of universal words for the infinite symmetric groups”, Algebra Universalis, 20 (1985), 205–216 | DOI | MR | Zbl

[8] M. Droste, R. Gobel, “Uncountable cofinalities of permutation groups”, J. London Math. Soc. (2), 71 (2005), 335–344 | DOI | MR | Zbl