Elementary covering numbers in odd-dimensional unitary groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 158-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $(K,\Delta)$ be a Hermitian form field and $n\geq 3$. We prove that if $\sigma\in \mathrm{U}_{2n+1}(K,\Delta)$ is a unitary matrix of level $(K,\Delta)$, then any short root transvection $T_{ij}(x)$ is a product of $4$ elementary unitary conjugates of $\sigma$ and $\sigma^{-1}$. Moreover, the bound $4$ is sharp. We also show that any extra short root transvection $T_i(x,y)$ is a product of $12$ elementary unitary conjugates of $\sigma$ and $\sigma^{-1}$. If the level of $\sigma$ is $(0,K\times 0)$, then any $(0,K\times 0)$-elementary extra short root transvection $T_i(x,0)$ is a product of $2$ elementary unitary conjugates of $\sigma$ and $\sigma^{-1}$.
@article{ZNSL_2021_500_a7,
     author = {R. Preusser},
     title = {Elementary covering numbers in odd-dimensional unitary groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--176},
     year = {2021},
     volume = {500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a7/}
}
TY  - JOUR
AU  - R. Preusser
TI  - Elementary covering numbers in odd-dimensional unitary groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 158
EP  - 176
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a7/
LA  - en
ID  - ZNSL_2021_500_a7
ER  - 
%0 Journal Article
%A R. Preusser
%T Elementary covering numbers in odd-dimensional unitary groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 158-176
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a7/
%G en
%F ZNSL_2021_500_a7
R. Preusser. Elementary covering numbers in odd-dimensional unitary groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 158-176. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a7/

[1] Z. Arad, J. Stavi, M. Herzog, “Powers and products of conjugacy classes in groups”, Products of conjugacy classes in groups, Lect. Notes Math., 1112, eds. Z. Arad, M. Herzog, Springer, 1985 | DOI | Zbl

[2] A. Bak, The stable structure of quadratic modules, PhD thesis, Columbia University, 1969

[3] A. Bak, R. Preusser, “The E-normal structure of odd dimensional unitary groups”, J. Pure Appl. Algebra, 222 (2018), 2823–2880 | DOI | MR | Zbl

[4] A. Beltran, M. J. Felipe, C. Melchor, “Some problems about products of conjugacy classes in finite groups”, Int. J. Group Theory, 9 (2020), 59–68 | MR | Zbl

[5] E. W. Ellers, N. Gordeev, M. Herzog, “Covering numbers for Chevalley groups”, Israel J. Math., 111 (1999), 339–372 | DOI | MR | Zbl

[6] N. Gordeev, “Products of conjugacy classes in algebraic groups I”, J. Algebra, 173 (1995), 715–744 | DOI | MR | Zbl

[7] N. Gordeev, “Products of conjugacy classes in algebraic groups II”, J. Algebra, 173 (1995), 745–779 | DOI | Zbl

[8] N. Gordeev, J. Saxl, “Products of conjugacy classes in Chevalley groups I. Extended covering numbers”, Isr. J. Math., 130 (2002), 207–248 | DOI | Zbl

[9] N. Gordeev, J. Saxl, “Products of conjugacy classes in Chevalley groups II. Covering and generation”, Isr. J. Math., 130 (2002), 249–258 | DOI | Zbl

[10] R. Guralnick, G. Malle, P. Huu Tiep, “Products of conjugacy classes in finite and algebraic simple groups”, Adv. Math., 234 (2013), 618–652 | DOI | MR | Zbl

[11] F. Knüppel, K. Nielsen, “The extended covering number of $SL_n$ is $n + 1$”, Linear Algebra Appl., 418 (2006), 634–656 | DOI | MR | Zbl

[12] A. Lev, “Products of cyclic conjugacy classes in the groups $PSL(n, F)$”, Linear Algebra Appl., 179 (1993), 59–83 | DOI | MR | Zbl

[13] A. Lev, “Products of cyclic similarity classes in the group $GL_n(F)$”, Linear Algebra Appl., 202 (1994), 235–266 | DOI | MR | Zbl

[14] A. Lev, “The covering number of the group $PSL_n(F)$”, J. Algebra, 182 (1996), 60–84 | DOI | MR | Zbl

[15] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2005), 4752–4766 | DOI | MR | Zbl

[16] R. Preusser, “The subnormal structure of classical-like groups over commutative rings”, J. Group Theory (to appear) | DOI

[17] D. M. Rodgers, J. Saxl, “Products of conjugacy classes in the special linear groups”, Comm. Algebra, 31 (2003), 4623–4638 | DOI | MR | Zbl

[18] L. N. Vaserstein, E. Wheland, “Products of conjugacy classes of two by two matrices”, Linear Algebra Appl., 230 (1995), 165–188 | DOI | MR | Zbl