Rings generated by convergence sets of a multidimensional complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 149-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study the convergence sets of a multidimensional complete field, that is, a set with the property that all power series over it converge when substituting an element of the maximal ideal for a variable. In particular, it is proved that the convergence set lies in the ring of integers if and only if it is contained in some convergence ring.
@article{ZNSL_2021_500_a6,
     author = {A. I. Madunts},
     title = {Rings generated by convergence sets of a multidimensional complete field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--157},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Rings generated by convergence sets of a multidimensional complete field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 149
EP  - 157
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/
LA  - ru
ID  - ZNSL_2021_500_a6
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Rings generated by convergence sets of a multidimensional complete field
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 149-157
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/
%G ru
%F ZNSL_2021_500_a6
A. I. Madunts. Rings generated by convergence sets of a multidimensional complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 149-157. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/

[1] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 215–234

[2] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 4–46

[3] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. semin. POMI, 272, 2000, 186–196 | Zbl

[4] A. I. Madunts, “Mnozhestva skhodimosti mnogomernogo polnogo polya”, Zap. nauchn. semin. POMI, 492, 2020, 125–133 | MR

[5] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Sankt-Peterburg, 1995, 14 pp.

[6] A. N. Parshin, “Abelevy nakrytiya arifmeticheskikh skhem”, Doklad AN SSSR. Ser. mat., 243 (1978), 855–858 | Zbl

[7] A. N. Parshin, “K arifmetike dvumernykh skhem. 1. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40 (1976), 736–773 | Zbl

[8] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Trudy MIAN, 165, 1984, 143–170 | Zbl

[9] A. I. Madunts, “Klassifikatsiya obobschennykh formalnykh grupp Lyubina–Teita nad mnogomernymi lokalnymi polyami”, Zap. nauchn. semin. POMI, 405 (2017), 91–97

[10] A. I. Madunts, S. V. Vostokov, R. P. Vostokova, “Formalnye gruppy nad podkoltsami koltsa tselykh mnogomernogo lokalnogo polya”, Vestnik S.-Peterb. un-ta. Mat. Mekh. Astr., 6:1 (2019), 88–97 | MR | Zbl