Rings generated by convergence sets of a multidimensional complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 149-157
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the convergence sets of a multidimensional complete field, that is, a set with the property that all power series over it converge when substituting an element of the maximal ideal for a variable. In particular, it is proved that the convergence set lies in the ring of integers if and only if it is contained in some convergence ring.
@article{ZNSL_2021_500_a6,
author = {A. I. Madunts},
title = {Rings generated by convergence sets of a multidimensional complete field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--157},
publisher = {mathdoc},
volume = {500},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/}
}
A. I. Madunts. Rings generated by convergence sets of a multidimensional complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 149-157. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/