Rings generated by convergence sets of a multidimensional complete field
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 149-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the convergence sets of a multidimensional complete field, that is, a set with the property that all power series over it converge when substituting an element of the maximal ideal for a variable. In particular, it is proved that the convergence set lies in the ring of integers if and only if it is contained in some convergence ring.
@article{ZNSL_2021_500_a6,
     author = {A. I. Madunts},
     title = {Rings generated by convergence sets of a multidimensional complete field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {500},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Rings generated by convergence sets of a multidimensional complete field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 149
EP  - 157
VL  - 500
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/
LA  - ru
ID  - ZNSL_2021_500_a6
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Rings generated by convergence sets of a multidimensional complete field
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 149-157
%V 500
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/
%G ru
%F ZNSL_2021_500_a6
A. I. Madunts. Rings generated by convergence sets of a multidimensional complete field. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 149-157. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a6/