Hochschild cohomology of algebras of semidihedral type, X. Cohomology algebra for exceptional local algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 51-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Hochschild cohomology algebra is described in term of generators and relations for a family of localalgebras of semidihedral type. This family appears in the famous K. Erdmann's classification only in the case where the characteristic of the base field is equal to 2.
@article{ZNSL_2021_500_a4,
     author = {A. I. Generalov},
     title = {Hochschild cohomology of algebras of semidihedral {type,~X.} {Cohomology} algebra for exceptional local algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--111},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a4/}
}
TY  - JOUR
AU  - A. I. Generalov
TI  - Hochschild cohomology of algebras of semidihedral type, X. Cohomology algebra for exceptional local algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 51
EP  - 111
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a4/
LA  - ru
ID  - ZNSL_2021_500_a4
ER  - 
%0 Journal Article
%A A. I. Generalov
%T Hochschild cohomology of algebras of semidihedral type, X. Cohomology algebra for exceptional local algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 51-111
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a4/
%G ru
%F ZNSL_2021_500_a4
A. I. Generalov. Hochschild cohomology of algebras of semidihedral type, X. Cohomology algebra for exceptional local algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 51-111. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a4/

[1] K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Math., 1428, Berlin–Heidelberg, 1990 | DOI | Zbl

[2] A. I. Generalov, D. A. Nikulin, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, IX. Isklyuchitelnye lokalnye algebry”, Zap. nauchn. semin. POMI, 478, 2019, 17–31

[3] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, I. Gruppovye algebry poludiedralnykh grupp”, Algebra i analiz, 21:2 (2009), 1–51

[4] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, II. Lokalnye algebry”, Zap. nauchn. semin. POMI, 386, 2011, 144–202

[5] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, III. Seriya $SD(2\mathcal B)_2$ v kharakteristike $2$”, Zap. nauchn. semin. POMI, 400, 2012, 133–157

[6] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, IV. Algebra kogomologii dlya serii $SD(2\mathcal B)_2(k,t,c)$ pri $c=0$”, Zap. nauchn. semin. POMI, 413, 2013, 45–92

[7] A. I. Generalov, I. M. Zilberbord, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, V. Seriya $SD(3\mathcal K)$”, Zap. nauchn. semin. POMI, 435, 2015, 5–32

[8] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VI. Seriya $SD(2\mathcal B)_2$ v kharakteristike, otlichnoi ot $2$”, Zap. nauchn. semin. POMI, 443, 2016, 61–77

[9] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VII. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 452, 2016, 52–69

[10] A. I. Generalov, A. A. Zaikovskii, “O proizvodnoi ekvivalentnosti algebr poludiedralnogo tipa s dvumya prostymi modulyami”, Zap. nauchn. semin. POMI, 452, 2016, 70–85

[11] A. I. Generalov, A. A. Zaikovskii, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VIII. Seriya $SD(2\mathcal B)_1$”, Zap. nauchn. semin. POMI, 460, 2017, 35–52

[12] A. I. Generalov, “Kogomologii Khokhshilda algebr diedralnogo tipa, I: seriya $D(3\mathcal{K})$ v kharakteristike $2$”, Algebra i analiz, 16:6 (2004), 53–122

[13] A. I. Generalov, N. Yu. Kosovskaya, “Kogomologii Khokhshilda algebr diedralnogo tipa, IV. Seriya $D(2\mathcal B)(k,s,0)$”, Zap. nauchn. semin. POMI, 423, 2014, 67–104