Lubin–Tate formal modules over higher local fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An analogue of the Lubin–Tate formal groups for the higher local fields of characteristic 0 is considered. The modules formed by the roots of the automorphisms of these formal groups are studied. The corresponding field extensions are constructed and their Galois groups are computed.
@article{ZNSL_2021_500_a2,
     author = {S. V. Vostokov and E. O. Leonova},
     title = {Lubin{\textendash}Tate formal modules over higher local fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--36},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a2/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - E. O. Leonova
TI  - Lubin–Tate formal modules over higher local fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 30
EP  - 36
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a2/
LA  - ru
ID  - ZNSL_2021_500_a2
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A E. O. Leonova
%T Lubin–Tate formal modules over higher local fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 30-36
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a2/
%G ru
%F ZNSL_2021_500_a2
S. V. Vostokov; E. O. Leonova. Lubin–Tate formal modules over higher local fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 30-36. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a2/

[1] T. Yoshida, “Local class field theory via Lubin-Tate theory”, Annales de la faculté des sciences de Toulouse Mathématiques, 17:2 (2008), 411–438 | Zbl

[2] K. Iwasawa, Local class field theory, Oxford Science Publications, The Clarendon Press Oxford University Press, 1986

[3] A. I. Madunts, R. P. Vostokova, “Formalnye moduli dlya obobschennykh grupp Lyubina–Teita”, Zap. nauchn. sem. POMI, 435, 2015, 95–112

[4] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. Math., Second Series, 81 (1965), 380–387 | DOI | MR | Zbl

[5] A. I. Madunts, “Formalnye gruppy Lyubina-Teita nad koltsom tselykh mnogomernogo lokalnogo polya”, Zap. nauchn. sem. POMI, 281, 2001, 221–226 | Zbl

[6] A. I. Madunts, “Klassifikatsiya obobschennykh formalnykh grupp Lyubina-Teita nad mnogomernymi lokalnymi polyami”, Zap. nauchn. sem. POMI, 455, 2017, 91–97

[7] I. B. Fesenko, “Mnogomernaya lokalnaya teoriya polei klassov. II”, Algebra i analiz, 3:5 (1991), 1103–1126 | Zbl

[8] S. V. Vostokov, E. O. Leonova, “Vychisleniya v obobschennoi teorii Lyubina–Teita”, Vestnik S.-Peterburg. un-ta. Mat. Mekh. Astr., 7:2 (2020), 210–216 | MR | Zbl