About one Galois embedding problem
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 204-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Galois embedding problem of an extension with an elementary abelian 2-group in an extension with the Galois group isomorphic to the group of unitriangular matrices over the 2-element field. It is proved that the solvability of the maximal accompanying problem with central kernel of period 2 is sufficient for the solvability of the original problem.
@article{ZNSL_2021_500_a10,
     author = {A. V. Yakovlev},
     title = {About one {Galois} embedding problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {204--212},
     year = {2021},
     volume = {500},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a10/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - About one Galois embedding problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 204
EP  - 212
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a10/
LA  - ru
ID  - ZNSL_2021_500_a10
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T About one Galois embedding problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 204-212
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a10/
%G ru
%F ZNSL_2021_500_a10
A. V. Yakovlev. About one Galois embedding problem. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 204-212. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a10/

[1] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990

[2] A. Pal, E. Szabo, The strong Massey vanishing for fields with virtual cohomological dimension at most $1$, 2020, 27 pp., arXiv: 1811.06192

[3] Y. Harpaz, O. Wittenberg, The Massey vanishing condition for number fields, 2019, 10 pp., arXiv: 1904.06512