Enhanced Dynkin diagrams done right
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 11-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we slightly modify the Dynkin–Minchenko construction of enhanced Dynkin diagrams and construct signed enhanced Dynkin diagrams of exceptional types $\Phi=\mathrm{E}_6$, $\mathrm{E}_7$, $\mathrm{E}_8$. We observe that these diagrams contain as subdiagrams all Carter–Stekolshchik diagrams of conjugacy classes of the Weyl groups $W(\Phi)$.
@article{ZNSL_2021_500_a1,
     author = {N. A. Vavilov and V. Migrin},
     title = {Enhanced {Dynkin} diagrams done right},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {11--29},
     year = {2021},
     volume = {500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - V. Migrin
TI  - Enhanced Dynkin diagrams done right
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 11
EP  - 29
VL  - 500
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a1/
LA  - en
ID  - ZNSL_2021_500_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A V. Migrin
%T Enhanced Dynkin diagrams done right
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 11-29
%V 500
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a1/
%G en
%F ZNSL_2021_500_a1
N. A. Vavilov; V. Migrin. Enhanced Dynkin diagrams done right. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 37, Tome 500 (2021), pp. 11-29. http://geodesic.mathdoc.fr/item/ZNSL_2021_500_a1/

[1] V. I. Arnold, Polymathematics, is Mathematics a single Science or a set of Arts?, 2000, 15 pp.

[2] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR | Zbl

[3] P. Bala, R. W. Carter, “Classes of unipotent elements in simple algebraic groups. II”, Math. Proc. Camb. Philos. Soc., 80 (1976), 1–18 | DOI | Zbl

[4] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: Systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968, 288 pp.

[5] R. W. Carter, “Conjugacy classes in the Weyl group”, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69), Springer, Berlin, 1970, 297–318 | DOI

[6] R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25:1 (1972), 1–59 | Zbl

[7] Amer. Math. Soc. Transl., 6 (1957), 111–244

[8] E. B. Dynkin, A. N. Minchenko, “Enhanced Dynkin diagrams and Weyl orbits”, Transform. Groups, 15:4 (2010), 813–841 | DOI | MR | Zbl

[9] J. S. Frame, “The classes and representations of the groups of $27$ lines and $28$ bitangents”, Ann. Mat. Pura Appl., 32:4 (1951), 83–119 | DOI | MR | Zbl

[10] J. S. Frame, “The characters of the Weyl group $\mathrm{E}_8$”, Computational Problems in Abstract Algebra, ed. J. Leech, Oxford, 1967, 111–130

[11] M. Geck, G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, Clarendon Press, Oxford, 2000 | Zbl

[12] A. Harebov, N. Vavilov, “On the lattice of subgroups of Chevalley groups containing a split maximal torus”, Comm. Algebra, 24:1 (1996), 109–133 | DOI | MR | Zbl

[13] V. V. Kornyak, “Quantization in discrete dynamical systems”, J. Math. Sci. (N.Y.), 168:3 (2010), 390–397 | DOI | MR | Zbl

[14] G. Lusztig, “From conjugacy classes in the Weyl group to unipotent classes”, Represent. Theory, 15 (2011), 494–530 | DOI | MR | Zbl

[15] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland Publishing Co., Amsterdam–London; American Elsevier Publishing Co., New York, 1974 | Zbl

[16] L. Manivel, “Configurations of lines and models of Lie algebras”, J. Algebra, 304:1 (2006), 457–486 | DOI | MR | Zbl

[17] J. McKee, C. Smyth, “Integer symmetric matrices having all their eigenvalues in the interval $[-2,2]$”, J. Algebra, 317:1 (2007), 260–290 | DOI | MR | Zbl

[18] J. McKee, C. Smyth, “Symmetrizable integer matrices having all their eigenvalues in the interval $[-2,2]$”, Algebr. Comb., 3:3 (2020), 775–789 | MR | Zbl

[19] V. Migrin, N. Vavilov, “Exceptional uniform polytopes of the $\mathrm{E}_6$, $\mathrm{E}_7$ and $\mathrm{E}_8$ symmetry types”, Polynomial Computer Algebra, St. Petersburg, 2021, 1–23

[20] T. Oshima, A classification of subsystems of a root system, 2007, arXiv: math/0611904v4 [math RT]

[21] V. Petrov, “A rational construction of Lie algebras of type $\mathrm{E}_7$”, J. Algebra, 481 (2017), 348–361 | DOI | MR | Zbl

[22] T. A. Springer, “Regular elements of finite reflection groups”, Invent. Math., 25 (1974), 159–198 | DOI | MR | Zbl

[23] R. Stekolshchik, Root systems and diagram calculus. I. Regular extensions of Carter diagrams and the uniqueness of conjugacy classes, 2012, arXiv: 1005.2769v6 [math.RT]

[24] R. Stekolshchik, Root systems and diagram calculus. II. Quadratic forms for the Carter diagrams, 2011, arXiv: 1010.5684v7 [math.RT]

[25] R. Stekolshchik, Root systems and diagram calculus. III. Semi-Coxeter orbits of linkage diagrams and the Carter theorem, 2011, arXiv: 1105.2875v3 [math.RT]

[26] R. Stekolshchik, “Equivalence of Carter diagrams”, Algebra Discrete Math., 23:1 (2017), 138–179 | MR | Zbl

[27] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of types $\mathrm{E}_l$”, J. Math. Sci. (N.Y.), 120:4 (2004), 1513–1548 | DOI | MR

[28] N. A. Vavilov, “Numerology of square equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR | Zbl

[29] N. A. Vavilov, “Some more exceptional numerology”, J. Math. Sci. (N.Y.), 171:3 (2010), 317–321 | DOI | MR | Zbl

[30] N. A. Vavilov, N. P. Kharchev, “Orbits of the subsystem stabilizers”, J. Math. Sci. (N.Y.), 145:1 (2007), 4751–4764 | DOI | MR

[31] N. A. Vavilov, A. A. Semenov, “Long root tori in Chevalley groups”, St. Petersburg Math. J., 24:3 (2013), 387–430 | DOI | MR | Zbl

[32] N. Wallach, “On maximal subsystems of root systems”, Canad. J. Math., 20 (1968), 555–574 | DOI | Zbl