A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 105-128

Voir la notice de l'article provenant de la source Math-Net.Ru

A novel method for the numerical solution of a hybrid (coupled physics) inverse problem is proposed. Based on a regularized weighted mean curvature flow equation, this method can be considered as an alternative to the variational approach to solving weighted least gradient Dirichlet problems arising in electrical conductivity imaging, in particular, in Current Density Impedance Imaging (CDII). Utilizing the Sternberg-Ziemer arguments, convergence of regularized solutions to a unique function of weighted least gradient is established. The numerical convergence study is also conducted to demonstrate the computational effectiveness of the proposed method.
@article{ZNSL_2021_499_a7,
     author = {A. Timonov},
     title = {A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--128},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/}
}
TY  - JOUR
AU  - A. Timonov
TI  - A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 105
EP  - 128
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/
LA  - ru
ID  - ZNSL_2021_499_a7
ER  - 
%0 Journal Article
%A A. Timonov
%T A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 105-128
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/
%G ru
%F ZNSL_2021_499_a7
A. Timonov. A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 105-128. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/