@article{ZNSL_2021_499_a7,
author = {A. Timonov},
title = {A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--128},
year = {2021},
volume = {499},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/}
}
TY - JOUR AU - A. Timonov TI - A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 105 EP - 128 VL - 499 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/ LA - ru ID - ZNSL_2021_499_a7 ER -
A. Timonov. A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 105-128. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/
[1] R. Acar, C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl
[2] L. Alvarez, P.-L. Lions, J.-M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion II”, SIAM J. Numer. Anal., 29 (1992), 845–866 | DOI | MR | Zbl
[3] A. Bakushinsky, A. Goncharsky, Ill-Posed Problems: Theory and Applications, Springer, New York, 1999
[4] M. Benzi, M. Tuma, “A comparative study of sparse approximate inverse preconditioners”, Appl. Num. Math., 30 (1999), 305–340 | DOI | Zbl
[5] M. Benzi, “Preconditioning techniques for large linear systems: A survey”, J. Comp. Phys., 182 (2002), 418–477 | DOI | Zbl
[6] J. H. Bramble, B. E. Hubbard, T. Vidar, “Convergence estimates for essentially positive type discrete Dirichlet problem”, Math. Comput., 23 (1969), 695–709 | DOI | Zbl
[7] Y-G. Chen, Y. Giga, S. Goto, “Uniqueness and extistence of viscosity solutions of generalized mean curvature flow equations”, J. Differ. Geom., 33 (1991), 749–786 | Zbl
[8] L. C. Evans, J. Spruck, “Motion of level sets by mean curvature. I”, J. Differ. Geometry, 33 (1991), 635–681 | DOI | Zbl
[9] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations, 2nd ed., Springer-Verlag, New York, 2001 | Zbl
[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed., Springer, New York, 2006 | Zbl
[11] R. L. Jerrard, A. Moradifam, A. Nachman, “Existence and uniqueness of minimizers of general least gradient problems”, J. Reine Angew. Math., 734 (2018), 71–97 | DOI | MR | Zbl
[12] B. S. Jovanovi$\widehat{c}$, E. Sűli, Analysis of Finite Difference Schemes for Linear Partial Differential Equations with Generalized Solutions, Springer, London, 2014 | Zbl
[13] S. Kim, O. Kwon, J. K. Seo et al., “On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography”, SIAM J. Math. Anal., 34 (2002), 511–526 | DOI | MR | Zbl
[14] O. A. Ladyzhenskaya, “Solution of the first boundary problem in the large for quasi-linear parabolic equations”, Trudy Moscov. Mat. Obs̆c̆., 7 (1958), 149–177 (in Russian) | Zbl
[15] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968
[16] A. Lichnewsky, R. Temam, “Pseudosolutions of the time-dependent minimal surface problem”, J. Differ. Eq., 30 (1978), 340–364 | DOI | MR | Zbl
[17] A. Moradifam, A. Nachman, A. Timonov, “A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data”, Inverse Problems, 28 (2012), 084003 | DOI | MR | Zbl
[18] A. Moradifam, A. Nachman, A. Tamasan, “Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging”, Calculus of Variations, PDE, 57 (2018) | MR | Zbl
[19] A. Nachman, A. Tamasan, A. Timonov, “Conductivity imaging with a single measurement of boundary and interior data”, Inverse Problems, 23 (2007), 2551–2563 | DOI | MR | Zbl
[20] A. Nachman, A. Tamasan, A. Timonov, “Recovering the conductivity from a single measurement of interior data”, Inverse Problems, 25 (2009), 035014 | DOI | MR | Zbl
[21] A. Nachman, A. Tamasan, A. Timonov, “Reconstruction of planar conductivities in subdomains from incomplete data”, SIAM J. Appl. Math., 70 (2010), 3342–3362 | DOI | MR | Zbl
[22] A. Nachman, A. Tamasan, J. Veras, “A weighted minimum gradient problem with complete electrode model boundary conditions for conductivity imaging”, SIAM J. Appl. Math., 76 (2016), 1321–1343 | DOI | MR | Zbl
[23] E. Rothe, “Zweidimensionale parabolishe Randwertaufgaben als Grenzfall eidimensionaler Randwertaufgaben”, Math. Ann., 102 (1930), 650–670 | DOI | MR | Zbl
[24] L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D, 60 (1992), 259–268 | DOI | MR | Zbl
[25] J. Schauder, “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Zeitschr., 38 (1934), 257–283 | DOI | MR
[26] A. A. Samarskii, “On the convergence and accuracy of homogeneous difference schemes for one-dimensional and multidimensional parabolic equations”, USSR Comp. Math., Math. Phys., 2 (1963), 654–696 | DOI
[27] A. A. Samarskii, I. V. Fryazinov, “On finite-difference schemes for solving the Dirichlet problem for an elliptic equation with variable coefficients in an arbitrary region”, USSR Comp. Math., Math. Phys., 11 (1971), 109–639 | DOI
[28] A. A. Samarskii, Theory of Difference Schemes, Marcell Decker Inc., New York, 2001 | Zbl
[29] G. C. Scott, M. L. Joy, R. L. Armstrong, R. M. Henkelman, “Measurement of nonuniform current density by magnetic resonance”, IEEE Trans. Med. Imag., 10 (1991), 362–374 | DOI
[30] P. Sternberg, W. P. Ziemer, “Generalized motion by curvature with a Dirichlet condition”, J. Differ. Eq., 114 (1994), 580–600 | DOI | Zbl
[31] A. Tamasan, A. Timonov, J. Veras, “Stable reconstruction of regular $1$-harmonic maps with a given trace at the boundary”, Appl. Anal., 2014 | DOI
[32] A. Tamasan, A. Timonov, “A regularized weighted least gradient problem for conductivity imaging”, Inverse Problems, 35 (2019), 045006 | DOI | MR | Zbl
[33] the original Russian edition, Nauka, M., 1990
[34] A. Timonov, “Numerical solution of a regularized weighted mean curvature flow problem for electrical conductivity imaging”, SIAM J. Sci. Comput., 41:5 (2019), B1137–B1154 | DOI | MR | Zbl
[35] C. R. Vogel, M. E. Oman, “Iterative methods for total variation denoising”, SIAM J. Sci. Comput., 17 (1996), 227–238 | DOI | MR | Zbl
[36] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002 | Zbl
[37] W. Zhu, T. Chan, “Image denoising using mean curvature of image surface”, SIAM J. Imag. Sci., 5 (2012), 1–32 | DOI | Zbl