A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 105-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A novel method for the numerical solution of a hybrid (coupled physics) inverse problem is proposed. Based on a regularized weighted mean curvature flow equation, this method can be considered as an alternative to the variational approach to solving weighted least gradient Dirichlet problems arising in electrical conductivity imaging, in particular, in Current Density Impedance Imaging (CDII). Utilizing the Sternberg-Ziemer arguments, convergence of regularized solutions to a unique function of weighted least gradient is established. The numerical convergence study is also conducted to demonstrate the computational effectiveness of the proposed method.
@article{ZNSL_2021_499_a7,
     author = {A. Timonov},
     title = {A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--128},
     year = {2021},
     volume = {499},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/}
}
TY  - JOUR
AU  - A. Timonov
TI  - A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 105
EP  - 128
VL  - 499
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/
LA  - ru
ID  - ZNSL_2021_499_a7
ER  - 
%0 Journal Article
%A A. Timonov
%T A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 105-128
%V 499
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/
%G ru
%F ZNSL_2021_499_a7
A. Timonov. A novel method for the numerical solution of a hybrid inverse problem of electrical conductivity imaging. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 105-128. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a7/

[1] R. Acar, C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl

[2] L. Alvarez, P.-L. Lions, J.-M. Morel, “Image selective smoothing and edge detection by nonlinear diffusion II”, SIAM J. Numer. Anal., 29 (1992), 845–866 | DOI | MR | Zbl

[3] A. Bakushinsky, A. Goncharsky, Ill-Posed Problems: Theory and Applications, Springer, New York, 1999

[4] M. Benzi, M. Tuma, “A comparative study of sparse approximate inverse preconditioners”, Appl. Num. Math., 30 (1999), 305–340 | DOI | Zbl

[5] M. Benzi, “Preconditioning techniques for large linear systems: A survey”, J. Comp. Phys., 182 (2002), 418–477 | DOI | Zbl

[6] J. H. Bramble, B. E. Hubbard, T. Vidar, “Convergence estimates for essentially positive type discrete Dirichlet problem”, Math. Comput., 23 (1969), 695–709 | DOI | Zbl

[7] Y-G. Chen, Y. Giga, S. Goto, “Uniqueness and extistence of viscosity solutions of generalized mean curvature flow equations”, J. Differ. Geom., 33 (1991), 749–786 | Zbl

[8] L. C. Evans, J. Spruck, “Motion of level sets by mean curvature. I”, J. Differ. Geometry, 33 (1991), 635–681 | DOI | Zbl

[9] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations, 2nd ed., Springer-Verlag, New York, 2001 | Zbl

[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed., Springer, New York, 2006 | Zbl

[11] R. L. Jerrard, A. Moradifam, A. Nachman, “Existence and uniqueness of minimizers of general least gradient problems”, J. Reine Angew. Math., 734 (2018), 71–97 | DOI | MR | Zbl

[12] B. S. Jovanovi$\widehat{c}$, E. Sűli, Analysis of Finite Difference Schemes for Linear Partial Differential Equations with Generalized Solutions, Springer, London, 2014 | Zbl

[13] S. Kim, O. Kwon, J. K. Seo et al., “On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography”, SIAM J. Math. Anal., 34 (2002), 511–526 | DOI | MR | Zbl

[14] O. A. Ladyzhenskaya, “Solution of the first boundary problem in the large for quasi-linear parabolic equations”, Trudy Moscov. Mat. Obs̆c̆., 7 (1958), 149–177 (in Russian) | Zbl

[15] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968

[16] A. Lichnewsky, R. Temam, “Pseudosolutions of the time-dependent minimal surface problem”, J. Differ. Eq., 30 (1978), 340–364 | DOI | MR | Zbl

[17] A. Moradifam, A. Nachman, A. Timonov, “A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data”, Inverse Problems, 28 (2012), 084003 | DOI | MR | Zbl

[18] A. Moradifam, A. Nachman, A. Tamasan, “Uniqueness of minimizers of weighted least gradient problems arising in conductivity imaging”, Calculus of Variations, PDE, 57 (2018) | MR | Zbl

[19] A. Nachman, A. Tamasan, A. Timonov, “Conductivity imaging with a single measurement of boundary and interior data”, Inverse Problems, 23 (2007), 2551–2563 | DOI | MR | Zbl

[20] A. Nachman, A. Tamasan, A. Timonov, “Recovering the conductivity from a single measurement of interior data”, Inverse Problems, 25 (2009), 035014 | DOI | MR | Zbl

[21] A. Nachman, A. Tamasan, A. Timonov, “Reconstruction of planar conductivities in subdomains from incomplete data”, SIAM J. Appl. Math., 70 (2010), 3342–3362 | DOI | MR | Zbl

[22] A. Nachman, A. Tamasan, J. Veras, “A weighted minimum gradient problem with complete electrode model boundary conditions for conductivity imaging”, SIAM J. Appl. Math., 76 (2016), 1321–1343 | DOI | MR | Zbl

[23] E. Rothe, “Zweidimensionale parabolishe Randwertaufgaben als Grenzfall eidimensionaler Randwertaufgaben”, Math. Ann., 102 (1930), 650–670 | DOI | MR | Zbl

[24] L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D, 60 (1992), 259–268 | DOI | MR | Zbl

[25] J. Schauder, “Über lineare elliptische Differentialgleichungen zweiter Ordnung”, Math. Zeitschr., 38 (1934), 257–283 | DOI | MR

[26] A. A. Samarskii, “On the convergence and accuracy of homogeneous difference schemes for one-dimensional and multidimensional parabolic equations”, USSR Comp. Math., Math. Phys., 2 (1963), 654–696 | DOI

[27] A. A. Samarskii, I. V. Fryazinov, “On finite-difference schemes for solving the Dirichlet problem for an elliptic equation with variable coefficients in an arbitrary region”, USSR Comp. Math., Math. Phys., 11 (1971), 109–639 | DOI

[28] A. A. Samarskii, Theory of Difference Schemes, Marcell Decker Inc., New York, 2001 | Zbl

[29] G. C. Scott, M. L. Joy, R. L. Armstrong, R. M. Henkelman, “Measurement of nonuniform current density by magnetic resonance”, IEEE Trans. Med. Imag., 10 (1991), 362–374 | DOI

[30] P. Sternberg, W. P. Ziemer, “Generalized motion by curvature with a Dirichlet condition”, J. Differ. Eq., 114 (1994), 580–600 | DOI | Zbl

[31] A. Tamasan, A. Timonov, J. Veras, “Stable reconstruction of regular $1$-harmonic maps with a given trace at the boundary”, Appl. Anal., 2014 | DOI

[32] A. Tamasan, A. Timonov, “A regularized weighted least gradient problem for conductivity imaging”, Inverse Problems, 35 (2019), 045006 | DOI | MR | Zbl

[33] the original Russian edition, Nauka, M., 1990

[34] A. Timonov, “Numerical solution of a regularized weighted mean curvature flow problem for electrical conductivity imaging”, SIAM J. Sci. Comput., 41:5 (2019), B1137–B1154 | DOI | MR | Zbl

[35] C. R. Vogel, M. E. Oman, “Iterative methods for total variation denoising”, SIAM J. Sci. Comput., 17 (1996), 227–238 | DOI | MR | Zbl

[36] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002 | Zbl

[37] W. Zhu, T. Chan, “Image denoising using mean curvature of image surface”, SIAM J. Imag. Sci., 5 (2012), 1–32 | DOI | Zbl