@article{ZNSL_2021_499_a6,
author = {A. V. Muzalevsky and S. I. Repin},
title = {A posteriori error control of approximate solutions to boundary value problems constructed by neural networks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--104},
year = {2021},
volume = {499},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a6/}
}
TY - JOUR AU - A. V. Muzalevsky AU - S. I. Repin TI - A posteriori error control of approximate solutions to boundary value problems constructed by neural networks JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 77 EP - 104 VL - 499 UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a6/ LA - ru ID - ZNSL_2021_499_a6 ER -
%0 Journal Article %A A. V. Muzalevsky %A S. I. Repin %T A posteriori error control of approximate solutions to boundary value problems constructed by neural networks %J Zapiski Nauchnykh Seminarov POMI %D 2021 %P 77-104 %V 499 %U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a6/ %G ru %F ZNSL_2021_499_a6
A. V. Muzalevsky; S. I. Repin. A posteriori error control of approximate solutions to boundary value problems constructed by neural networks. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 77-104. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a6/
[1] W. E, J. Han, A. Jentzen, “Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations”, Commun. Math. Stat., 5 (2017), 349–380 | DOI | MR | Zbl
[2] J. He, L. Li, J. Xu, C. Zheng, ReLU deep neural networks and linear finite elements, arXiv: 1807.03973v2
[3] R. Khudorozhkov, S. Tsimfer, A. Koryagin, PyDEns framework for solving differential equations with deep learning, 2019, arXiv: 1909.11544 [cs.LG]
[4] I. E. Lagaris, A. Likas, D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial differential equations”, IEEE Transactions on Neural Networks, 9:5, 987–1000 | DOI
[5] W. E, B. Yu, “The Deep Ritz Method: A deep learning-based numerical algorithm for solving variational problems”, Commun. Math. Stat., 6 (2018), 1–12 | MR
[6] O. Pironneau, “Parameter identification of a fluid-structure system by deep-learning with an Eulerian formulation”, Methods Appl. Anal., 26:3 (2019), 281–290 | DOI | MR | Zbl
[7] F. Regazzonia, L. Dede, A. Quarteroni, “Machine learning for fast and reliable solution of time-dependent differential equations”, J. Comput. Phys., 397 (1088), 108852 | DOI
[8] E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuka, “An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications”, Comput. Methods Appl. Mech. Engrg., 362 (2020), 112790 | DOI | MR | Zbl
[9] S. Repin, A posteriori estimates for partial differential equations, Walter de Gruyter GmbH Co. KG, Berlin, 2008
[10] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Stuttgart, 1996 | Zbl
[11] S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Semin., 243, 1997, 201–214 | Zbl
[12] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comp., 69 (2000), 481–500 | DOI | MR | Zbl
[13] C. I. Repin, “Dvustoronnie otsenki otkloneniya ot tochnogo resheniya dlya ravnomerno ellipticheskikh uravnenii”, Trudy S.-Peterburgskogo matematicheskogo obschestva, 9 (2001), 148–179 | Zbl
[14] S. Repin, “Estimates of deviation from exact solutions of initial-boundary value problems for the heat equation”, Rend. Mat. Acc. Lincei, 13 (2002), 121–133 | Zbl
[15] S. Repin, S. Sauter, A. Smolianski, “Two-sided a posteriori error estimates for mixed formulations of elliptic problems”, SIAM J. Num. Analysis, 45 (2007), 928–945 | DOI | Zbl
[16] S. I. Repin, M. E. Frolov, “Aposteriornye otsenki pogreshnosti priblizhennykh reshenii kraevykh zadach ellipticheskogo tipa”, ZhVMiMF, 42:12 (2002), 1704–1716 | MR | Zbl
[17] O. Mali, P. Nettaanmäki, S. Repin, Accuracy verification methods. Theory and Algorithms, Springer, Berlin, 2014 | Zbl
[18] P. A. Raviart, J. M. Thomas, “A mixed finite element method for 2-nd order elliptic problems”, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, eds. Galligani I., Magenes E., Springer, Berlin–Heidelberg, 1977
[19] J. Sirignano, K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial differential equations”, J. Comput. Phys., 375 (2018), 1339–1364 | DOI | MR | Zbl
[20] H. Gomez, L. Lorenzis, “The variational collocation method”, Computer Methods in Applied Mechanics and Engineering, 309, 2016, 152–181 | DOI | Zbl