Factorization of the projection matrix onto a subspace
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 67-76
Cet article a éte moissonné depuis la source Math-Net.Ru
A deep factorization of theorthogonal projection matrix onto a subspace is obtained. $LQ$ decomposition isused. For construction of the orthogonal matrix $Q$ the method of successive rankreduction is applied.
@article{ZNSL_2021_499_a5,
author = {V. N. Malozemov and G. Sh. Tamasyan},
title = {Factorization of the projection matrix onto a subspace},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--76},
year = {2021},
volume = {499},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a5/}
}
V. N. Malozemov; G. Sh. Tamasyan. Factorization of the projection matrix onto a subspace. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 67-76. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a5/
[1] V. N. Malozemov, Lineinaya algebra bez opredelitelei. Kvadratichnaya funktsiya, Izd-vo SPbGU, SPb., 1997
[2] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989
[3] G. H. Golub, C. F. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, 2013 | Zbl
[4] Lineal. Bazovaya elektronnaya entsiklopediya po lineinoi algebre, http://lineal.guru.ru/