Factorization of the projection matrix onto a subspace
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A deep factorization of theorthogonal projection matrix onto a subspace is obtained. $LQ$ decomposition isused. For construction of the orthogonal matrix $Q$ the method of successive rankreduction is applied.
@article{ZNSL_2021_499_a5,
     author = {V. N. Malozemov and G. Sh. Tamasyan},
     title = {Factorization of the projection matrix onto a subspace},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--76},
     year = {2021},
     volume = {499},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a5/}
}
TY  - JOUR
AU  - V. N. Malozemov
AU  - G. Sh. Tamasyan
TI  - Factorization of the projection matrix onto a subspace
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 67
EP  - 76
VL  - 499
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a5/
LA  - ru
ID  - ZNSL_2021_499_a5
ER  - 
%0 Journal Article
%A V. N. Malozemov
%A G. Sh. Tamasyan
%T Factorization of the projection matrix onto a subspace
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 67-76
%V 499
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a5/
%G ru
%F ZNSL_2021_499_a5
V. N. Malozemov; G. Sh. Tamasyan. Factorization of the projection matrix onto a subspace. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 67-76. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a5/

[1] V. N. Malozemov, Lineinaya algebra bez opredelitelei. Kvadratichnaya funktsiya, Izd-vo SPbGU, SPb., 1997

[2] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989

[3] G. H. Golub, C. F. Van Loan, Matrix Computations, 4th ed., The Johns Hopkins University Press, Baltimore, 2013 | Zbl

[4] Lineal. Bazovaya elektronnaya entsiklopediya po lineinoi algebre, http://lineal.guru.ru/