Refinement masks of tight wavelet frames
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 53-66

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we obtain sufficient conditions for a trigonometric polynomial to be a refinement mask corresponding to a tight wavelet frame. The condition is formulated in terms of the roots of a mask. In particular, it is proved that any trigonometric polynomial can serve as a mask if its associated algebraic polynomial has only nonpositive roots (at least one of them, of course, equals $-1$).
@article{ZNSL_2021_499_a4,
     author = {E. A. Lebedeva and I. A. Sherbakov},
     title = {Refinement masks of tight wavelet frames},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a4/}
}
TY  - JOUR
AU  - E. A. Lebedeva
AU  - I. A. Sherbakov
TI  - Refinement masks of tight wavelet frames
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 53
EP  - 66
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a4/
LA  - ru
ID  - ZNSL_2021_499_a4
ER  - 
%0 Journal Article
%A E. A. Lebedeva
%A I. A. Sherbakov
%T Refinement masks of tight wavelet frames
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 53-66
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a4/
%G ru
%F ZNSL_2021_499_a4
E. A. Lebedeva; I. A. Sherbakov. Refinement masks of tight wavelet frames. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 53-66. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a4/