Refinement masks of tight wavelet frames
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 53-66
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper we obtain sufficient conditions for a trigonometric polynomial to be a refinement mask corresponding to a tight wavelet frame. The condition is formulated in terms of the roots of a mask. In particular, it is proved that any trigonometric polynomial can serve as a mask if its associated algebraic polynomial has only nonpositive roots (at least one of them, of course, equals $-1$).
@article{ZNSL_2021_499_a4,
author = {E. A. Lebedeva and I. A. Sherbakov},
title = {Refinement masks of tight wavelet frames},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {53--66},
year = {2021},
volume = {499},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a4/}
}
E. A. Lebedeva; I. A. Sherbakov. Refinement masks of tight wavelet frames. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 53-66. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a4/
[1] A. Ron, Z. Shen, “Affine systems in $L_2(\mathbb{R}^d)$: the analysis of the analysis operator”, J. Funct. Anal., 148 (1997), 408–447 | DOI | MR | Zbl
[2] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Industrial and Applied Mathematics, Springer, Singapore, 2016 | Zbl
[3] A. Petukhov, “Explicit construction of framelets”, Appl. Comput. Harmon. Anal., 11 (2001), 313–327 | DOI | MR | Zbl
[4] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005
[5] G. V. Milovanovic, D. S. Mitrinovic, Th. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific Pub Co Inc., 1994 | Zbl