Non-saturated estimates of the Kotelnikov formula error
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 22-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the error of approximation by Kotelnikov sums $$U_Tf(x)= \sum_{j\in\Bbb Z}f\left(\frac{j}{T}\right)\mathrm{sinc}(Tx-j),\quad T>0,\quad \mathrm{sinc}{z}=\frac{\sin{\pi z}}{\pi z}.$$ Let $f\in\mathbf{A}$, i.e. $f(x)=\int_{\Bbb R}g(y)e^{ixy}\,dy$, $g\in L_1(\Bbb R)$, and let $\|f\|_\mathbf{A}=\int_{\Bbb R}|g|$ iz Wiener norm of $f$. Then the sharp inequality $$\|f-U_Tf\|_{\mathbf A}\leqslant 2A_{T\pi}(f)_{\mathbf A}$$ holds, where $A_{\sigma}(f)_{\mathbf{A}}$ is the best approximation of $f$ in the Wiener norm by entire functions of type not exceeding $\sigma$. We also establish non-saturated uniform estimates.
@article{ZNSL_2021_499_a2,
     author = {O. L. Vinogradov},
     title = {Non-saturated estimates of the {Kotelnikov} formula error},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--37},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Non-saturated estimates of the Kotelnikov formula error
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 22
EP  - 37
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/
LA  - ru
ID  - ZNSL_2021_499_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Non-saturated estimates of the Kotelnikov formula error
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 22-37
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/
%G ru
%F ZNSL_2021_499_a2
O. L. Vinogradov. Non-saturated estimates of the Kotelnikov formula error. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 22-37. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/