Non-saturated estimates of the Kotelnikov formula error
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 22-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We estimate the error of approximation by Kotelnikov sums $$U_Tf(x)= \sum_{j\in\Bbb Z}f\left(\frac{j}{T}\right)\mathrm{sinc}(Tx-j),\quad T>0,\quad \mathrm{sinc}{z}=\frac{\sin{\pi z}}{\pi z}.$$ Let $f\in\mathbf{A}$, i.e. $f(x)=\int_{\Bbb R}g(y)e^{ixy}\,dy$, $g\in L_1(\Bbb R)$, and let $\|f\|_\mathbf{A}=\int_{\Bbb R}|g|$ iz Wiener norm of $f$. Then the sharp inequality $$\|f-U_Tf\|_{\mathbf A}\leqslant 2A_{T\pi}(f)_{\mathbf A}$$ holds, where $A_{\sigma}(f)_{\mathbf{A}}$ is the best approximation of $f$ in the Wiener norm by entire functions of type not exceeding $\sigma$. We also establish non-saturated uniform estimates.
@article{ZNSL_2021_499_a2,
     author = {O. L. Vinogradov},
     title = {Non-saturated estimates of the {Kotelnikov} formula error},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--37},
     year = {2021},
     volume = {499},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/}
}
TY  - JOUR
AU  - O. L. Vinogradov
TI  - Non-saturated estimates of the Kotelnikov formula error
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 22
EP  - 37
VL  - 499
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/
LA  - ru
ID  - ZNSL_2021_499_a2
ER  - 
%0 Journal Article
%A O. L. Vinogradov
%T Non-saturated estimates of the Kotelnikov formula error
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 22-37
%V 499
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/
%G ru
%F ZNSL_2021_499_a2
O. L. Vinogradov. Non-saturated estimates of the Kotelnikov formula error. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 22-37. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a2/

[1] B. Ya. Levin, Lectures on entire functions, AMS, 1996 | Zbl

[2] J. L. Brown Jr., “On the error of reconstructing a non-bandlimited function by means of the bandpass sampling theorem”, J. Math. Anal. Appl., 18 (1967), 75–84 | DOI | MR | Zbl

[3] B. M. Makarov, M. G. Goluzina, A. A. Lodkin, A. N. Podkorytov, Izbrannye zadachi po veschestvennomu analizu, Nevskii dialekt, BKhV-Peterburg, SPb, 2004

[4] D. S. Lubinsky, “Weighted Markov-Bernstein inequalities for entire functions of exponential type”, Publications de l'institut mathématique, Nouvelle série, 96 (2014), 181–192 | DOI | Zbl

[5] B. Sz. Nagy, “Séries et intégrales de Fourier des fonctions monotones non bornées”, Acta Sci. Math. (Szeged), 13:2 (1949), 118–135 | Zbl

[6] R. P. Boas, Integrability theorems for trigonometric transforms, Springer-Verlag, New York, 1967 | Zbl

[7] R. P. Boas, “Summation formulas, signals”, Tôhoku Math. J. band-limited, 24:2 (1972), 121–125 | Zbl

[8] W. Beckner, “Inequalities in Fourier analysis”, Ann. mathematics, 102 (1975), 159–182 | DOI | MR | Zbl

[9] W. Splettstösser, “Error estimates for sampling approximation of non-bandlimited functions”, Math. meth. Appl. Sci., 1 (1979), 127–137 | DOI | MR | Zbl

[10] R. L. Stens, “Approximation to duration-limited functions by sampling sums”, Signal processing, 2 (1980), 173–176 | DOI | MR

[11] P. L. Butzer, “A survey of the Whittaker-Shannon sampling theorem and some of its extensions”, J. Math. research and exposition, 3:1 (1983), 185–212 | MR

[12] P. L. Butzer, R. L. Stens, “Sampling theory for not necessarily band-limited functions: a historical overview”, SIAM Review, 34:1 (1992), 40–53 | DOI | MR | Zbl

[13] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M.–L., 1960

[14] O. L. Vinogradov, “O skorosti stremleniya k nulyu masshtabiruyuschei funktsii Meiera”, Zap. nauchn. semin. POMI, 491, 2020, 52–65