Topic models with sentiment priors based on distributed representations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 284-301
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In recent works, topic models for aspect-based opinion mining have been extended to automatically train sentiment priors for topic-word distributions, leading to automated discovery of sentiment words and improved sentiment classification. In this work, we propose an approach where sentiment priors are trained in the space of word embeddings; this allows us to both discover more aspect-related sentiment words and further improve classification. We also present an experimental study that validates our results.
			
            
            
            
          
        
      @article{ZNSL_2021_499_a15,
     author = {E. Tutubalina and S. I. Nikolenko},
     title = {Topic models with sentiment priors based on distributed representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {284--301},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a15/}
}
                      
                      
                    TY - JOUR AU - E. Tutubalina AU - S. I. Nikolenko TI - Topic models with sentiment priors based on distributed representations JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 284 EP - 301 VL - 499 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a15/ LA - en ID - ZNSL_2021_499_a15 ER -
E. Tutubalina; S. I. Nikolenko. Topic models with sentiment priors based on distributed representations. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 284-301. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a15/