Improving classification robustness for noisy texts with robust word vectors
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 236-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Text classification is a fundamental task in natural language processing, and a huge body of research has been devoted to it. However, there has been little work on investigating noi se robustness for the developed approaches. In this work, we are bridging this gap, introducing results on noise robustness testing of modern text classification architectures for Engl ish and Russian languages. We benchmark the CharCNN and SentenceCNN models and introduce a new model, called RoVe, that we show to be the most robust to noise.
@article{ZNSL_2021_499_a12,
     author = {V. Malykh and V. Lyalin},
     title = {Improving classification robustness for noisy texts with robust word vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--247},
     year = {2021},
     volume = {499},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/}
}
TY  - JOUR
AU  - V. Malykh
AU  - V. Lyalin
TI  - Improving classification robustness for noisy texts with robust word vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 236
EP  - 247
VL  - 499
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/
LA  - en
ID  - ZNSL_2021_499_a12
ER  - 
%0 Journal Article
%A V. Malykh
%A V. Lyalin
%T Improving classification robustness for noisy texts with robust word vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 236-247
%V 499
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/
%G en
%F ZNSL_2021_499_a12
V. Malykh; V. Lyalin. Improving classification robustness for noisy texts with robust word vectors. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 236-247. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/

[1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification, 2016, arXiv: 1607.01759

[2] V. Malykh, Robust Word Vectors: Embeddings for Noisy Texts, 2018, arXiv: 1607.01759 | Zbl

[3] Y. Kim, Y. Jernite, D. Sontag, A. M. Rush, “Character-Aware Neural Language Models”, AAAI 2016, 2741–2749

[4] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, Ch. Potts, “Learning Word Vectors for Sentiment Analysis”, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 2011, 142–150

[5] S. Cucerzan, E. Brill, “Spelling correction as an iterative process that exploits the collective knowledge of web users”, Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, 2004

[6] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of tricks for efficient text classification, 2016, arXiv: 1607.01759

[7] J. Howard, S. Ruder, Fine-tuned Language Models for Text Classification, 2018, arXiv: 1801.06146

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, E. Kaiser, I. Polosukhin, “Attention is all you need”, Advances in Neural Information Processing Systems, 2017, 6000–6010

[9] X. Zhang, J. J. Zhao, Y. LeCun, Character-level Convolutional Networks for Text Classification, 2017, arXiv: 1509.01626

[10] Y. Kim, Convolutional Neural Networks for Sentence Classification, 2014, arXiv: 1408.5882

[11] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches”, 2014, arXiv: 1409.1259

[12] D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, 2014, arXiv: 1409.0473

[13] Y. Bengio, P. Simard, P. Frasconi, “Learning long-term dependencies with gradient descent is difficult”, IEEE transactions on neural networks, 5:2 (1994), 157–166 | DOI

[14] E. Tutubalina, S. Nikolenko, “Inferring sentiment-based priors in topic models”, Mexican International Conference on Artificial Intelligence, 2015, 92–104

[15] J. Niu, Y. Yang, S. Zhang, Z. Sun, W. Zhang, “Multi-task Character-Level Attentional Networks for Medical Concept Normalization”, Neural Processing Letters, 2018, 1–18

[16] Y. Li, T. Cohn, Y. Baldwin, “Learning robust representations of text”, Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016, 1979–1985

[17] N. V. Loukachevitch, et al., “SentiRuEval: Testing Object-oriented Sentiment Analysis Systems in Russian”, Proceedings of International Conference “Dialog”, 2015

[18] V. Malykh, “Generalizable Architecture for Robust Word Vectors Tested by Noisy Paraphrases”, Supplementary Proceedings of the Sixth International Conference on Analysis of Images, Social Networks and Texts, AIST 2017 (Moscow, Russia, 2017)