Improving classification robustness for noisy texts with robust word vectors
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 236-247
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Text classification is a fundamental task in natural language processing, and a huge body of research has been devoted to it. However, there has been little work on investigating noi se robustness for the developed approaches. In this work, we are bridging this gap, introducing results on noise robustness testing of modern text classification architectures for Engl ish and Russian languages. We benchmark the CharCNN and SentenceCNN models and introduce a new model, called RoVe, that we show to be the most robust to noise.
			
            
            
            
          
        
      @article{ZNSL_2021_499_a12,
     author = {V. Malykh and V. Lyalin},
     title = {Improving classification robustness for noisy texts with robust word vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--247},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/}
}
                      
                      
                    TY - JOUR AU - V. Malykh AU - V. Lyalin TI - Improving classification robustness for noisy texts with robust word vectors JO - Zapiski Nauchnykh Seminarov POMI PY - 2021 SP - 236 EP - 247 VL - 499 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/ LA - en ID - ZNSL_2021_499_a12 ER -
V. Malykh; V. Lyalin. Improving classification robustness for noisy texts with robust word vectors. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 236-247. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a12/