@article{ZNSL_2021_499_a11,
author = {D. Mazitov and I. Alimova and E. Tutubalina},
title = {Named entity recognition in {Russian} using multi-task {LSTM-CRF}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {222--235},
year = {2021},
volume = {499},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a11/}
}
D. Mazitov; I. Alimova; E. Tutubalina. Named entity recognition in Russian using multi-task LSTM-CRF. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 222-235. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a11/
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a system for large-scale machine learning”, OSDI, 16 (2016), 265–283
[2] C. Adak, B. B. Chaudhuri, M. Blumenstein, “Named entity recognition from unstructured handwritten document images”, 12th IAPR Workshop on Document Analysis Systems (DAS), 2016, 375–380
[3] L. T. Anh, M. Y. Arkhipov, M. S. Burtsev, Application of a hybrid bi-LSTM-CRF model to the task of Russian named entity recognition, Communications in Computer and Information Science book series – CCIS, 789, 2017
[4] L.T. Anh, M. Y. Arkhipov, M. S. Burtsev, Application of a hybrid bi-LSTM-CRF model to the task of Russian named entity recognition, 2017, arXiv: 1709.09686
[5] A. Y. Antonova, A. N. Soloviev, “Conditional random field models for the processing of Russian”, Communications of the ACM, 56:6 (2013) | Zbl
[6] M. Y. Arkhipov, M. S. Burtsev, L. T. Anh, “Application of a hybrid bi-LSTM-CRF model to the task of Russian named entity recognition”, Conference on Artificial Intelligence and Natural Language, Springer, Cham, 2017 | Zbl
[7] M. M. Brykina, A. V. Faynveyts, S. Yu. Toldova, “Dictionary-based ambiguity resolution in Russian named entities recognition”, International Workshop on Computational Linguistics and its Applications, v. 1, ed. A. Narin'yani, 2013 | Zbl
[8] R. Chalapathy, E. Z. Borzeshi, M. Piccardi, Bidirectional LSTM-CRF for clinical concept extraction, 2016, arXiv: 1611.08373
[9] J.P.C. Chiu, E. Nichols, “Named entity recognition with bidirectional LSTM-cnns”, Transactions of the Association for Computational Linguistics, 4 (2016), 357–370 | DOI
[10] L.G. Craidlin, “Program of allocation of Russian individualized nominal groups taglite”, Computational linguistics and intellectual technologies Dialog, 2005
[11] D. Kingma, J. Ba, “Adam: A method for stochastic optimization”, 3rd International Conference for Learning Representations (San Diego, 2014)
[12] C. Dong, J. Zhang, C. Zong, M. Hattori, H. Di, “Character-based LSTM-CRF with radical-level features for chinese named entity recognition”, Natural Language Understanding and Intelligent Applications, Springer, 2016, 239–250 | DOI
[13] R. Gareev, M. Tkachenko, V. Solovyev, A. Simanovsky, V. Ivanov, “Introducing baselines for Russian named entity recognition”, Computational Linguistics and Intelligent Text Processing, 2013
[14] A. Graves, S. Fernández, J. Schmidhuber, “Bidirectional LSTM networks for improved phoneme classification and recognition”, Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005, 2005
[15] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber, “LSTM: A search space odyssey”, IEEE Trans Neural Netw Learn Syst., 2016 | DOI | Zbl
[16] Z. Huang, W. Xu, K. Yu, Bidirectional LSTM-CRF models for sequence tagging, 2015, arXiv: 1508.01991
[17] Kaggle, Predict Russian universal dependencies POS tags, 2017
[18] G. Konoplich, E. Putin, A. Filchenkov, R. Rybka, “Named entity recognition in Russian with word representation learned by a bidirectional language model”, AINL, 2018
[19] G. Konoplich, E. Putin, A. Filchenkov, R. Rybka, “Named entity recognition in Russian with word representation learned by a bidirectional language model”, Conference on Artificial Intelligence and Natural Language, Springer, 2018, 48–58
[20] J. Lafferty, A. McCallum, F. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data”, Proc. 18th International Conference on Machine Learning, 2001
[21] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, C. Dyer, “Neural architectures for named entity recognition”, Proc. 2016 NAACL, 2016, 260–270
[22] X. Ma, E. Hovy, End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF, 2016, arXiv: 1603.01354
[23] V. Malykh, A. Ozerin, “Reproducing Russian ner baseline quality without additional data”, CDUD@ CLA, 2016, 54–59
[24] S. Misawa, M. Taniguchi, Y. Miura, T. Ohkuma, “Character-based bidirectional LSTM-CRF with words and characters for japanese named entity recognition”, Proc. 1st Workshop on Subword and Character Level Models in NLP, 2017, 97–102 | DOI
[25] V. Mozharova, N. Loukachevitch, “Two-stage approach in Russian named entity recognition”, Proc. 2016 International FRUCT Conference on Intelligence, Social Media and Web, ISMW FRUCT, IEEE, 2016, 1–6
[26] A. V. Podobryaev, “Searching for person memories in news texts with the use of a model of conditional random fields”, RCDL 2013
[27] B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov, “Kim — a semantic platform for information extraction and retrieval”, Journal of Natural Language Engineering, 10 (2004) | DOI | Zbl
[28] R. M. Zavala, P. Martinez, I. Segura-Bedmar, “A hybrid bi-LSTM-CRF model for knowledge recognition from ehealth documents”, TASS 2018: Workshop on Semantic Analysis at SEPLN, 2018, 65–70
[29] R. Ivanitskiy, A. Shipilo, L. Kovriguina, “Russian named entities recognition and classification using distributed word and phrase representations”, SIMBig, 2016
[30] A. V. Rubaylo, M. Y. Kosenko, Software utilities for natural language information retrievial, Almanac of modern science and education, 12, 2016
[31] E. Sheng, S. Miller, J.S. Ambite, P. Natarajan, “A neural named entity recognition approach to biological entity identification”, Proc. BioCreative VI Workshop, 2017, 24–27
[32] A. S. Starostin, V. V. Bocharov, S. V. Alexeeva, A. Bodrova, A. S. Chuchunkov, S. S. Dzhumaev, M. A. Nikolaeva, “Evaluation of named entity recognition and fact extraction systems for Russian”, Annual International Conference Dialogue, 2016
[33] A.A. Sysoev, I.A. Andrianov, “Named entity recognition in Russian: the power of wiki-based approach”, Proc. International Conference Dialogue, 2016, 746–755
[34] I. V. Trofimov, “Person name recognition in news articles based on the persons-1000/1111-f collections”, 16th All-Russian Scientific Conference Digital Libraries: Advanced Methods and Technologies, Digital Collections, RCDL, 2014, 217–221
[35] E. Tutubalina, S. Nikolenko, “Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews”, Journal of Healthcare Engineering, 2017 (2017), 9451342 | DOI
[36] N. A. Vlasova, E. A. Suleymanova, I. V. Trofimov, “Report on Russian corpus for personal name retrieval”, Proceedings of computational and cognitive linguistics TEL, 2014
[37] Q. Wei, T. Chen, R. Xu, Y. He, L. Gui, Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks, Database, 2016, 2016 | DOI