Named entity recognition in Russian using multi-task LSTM-CRF
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 222-235

Voir la notice de l'article provenant de la source Math-Net.Ru

Named entity recognition (NER) is aimed at obtaining the important information from the unstructured data presented in the form of natural language texts. In this paper, we investigate the efficiency of modern multi-task NER approach on Russian corpora by employing several different NER datasets and a dataset of part-of-speech (POS) tags. We apply a state-of-the-art neural architecture based on bidirectional LSTMs and conditional random fields. Convolutional neural networks were utilized to learn character-level features. We carry out an extensive experimental evaluation over three standard datasets of news written in Russian. The proposed multi-task model achieve states-of-the-art results with an F1 score of 88.04% on Gareev's dataset and an F1 score of 99.49% on Person-1000 dataset.
@article{ZNSL_2021_499_a11,
     author = {D. Mazitov and I. Alimova and E. Tutubalina},
     title = {Named entity recognition in {Russian} using multi-task {LSTM-CRF}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--235},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a11/}
}
TY  - JOUR
AU  - D. Mazitov
AU  - I. Alimova
AU  - E. Tutubalina
TI  - Named entity recognition in Russian using multi-task LSTM-CRF
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 222
EP  - 235
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a11/
LA  - en
ID  - ZNSL_2021_499_a11
ER  - 
%0 Journal Article
%A D. Mazitov
%A I. Alimova
%A E. Tutubalina
%T Named entity recognition in Russian using multi-task LSTM-CRF
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 222-235
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a11/
%G en
%F ZNSL_2021_499_a11
D. Mazitov; I. Alimova; E. Tutubalina. Named entity recognition in Russian using multi-task LSTM-CRF. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 222-235. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a11/