@article{ZNSL_2021_499_a1,
author = {P. A. Andrianov},
title = {Discrete periodic multiresolution analysis},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--21},
year = {2021},
volume = {499},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a1/}
}
P. A. Andrianov. Discrete periodic multiresolution analysis. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a1/
[1] B. Han, “On dual wavelet tight frames”, ACHA, 4 (1997), 380–413 | Zbl
[2] B. Han, “Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix”, J. Comput. Appl. Math., 155 (2003), 43–67 | DOI | MR | Zbl
[3] A. Ron, Z. Shen, “Gramian analysis of affine bases and affine frames”, Approximation Theory VIII, v. 2, Wavelets, eds. C.K. Chui, L. Schumaker, World Scientific, Publishing Co. Inc, Singapore, 1995, 375–382 | Zbl
[4] A. Ron, Z. Shen, “Frame and stable bases for shift-invariant subspaces of L2(Rd)”, Canad. J. Math., 47:5 (1995), 1051–1094 | DOI | MR | Zbl
[5] A. Krivoshein, V. Protasov, M. Skopina, Multivariate Wavelet Frames, Springer, Singapore, 2016 | Zbl
[6] C. K. Chui, J. Z. Wang, “A general framework of compact supported splines and wavelets”, J. Approx. Theory, 71 (1992), 263–304 | DOI | MR | Zbl
[7] S. S. Gon, S. Z. Lee, Z. Shen, W. S. Tang, “Construction of Schauder decomposition on banach spaces of periodic functions”, Proceedings of the Edinburgh Mathematical Society, 41:1 (1998), 61–91 | DOI | MR
[8] A. P. Petukhov, “Periodic wavelets”, Mat. Sb., 188:10 (1997), 69–94 | DOI | MR | Zbl
[9] V. A. Zheludev, “Periodic splines and wavelets”, Proc. of the Conference “Math. Analysis and Signal Processing” (Cairo, Jan. 2–9, 1994)
[10] M. Skopina, “Multiresolution analysis of periodic functions”, East Journal on Approximations, 3:2 (1997), 203–224 | MR | Zbl
[11] J. A. Gubner, W.-B. Chang, “Wavelet transforms for discrete-time periodic signals”, Signal Processing, 42 (1995), 167–180 | DOI | Zbl
[12] V. A. Kirushev, V. N. Malozemov, A. B. Pevnyi, “Wavelet Decomposition of the Space of Discrete Periodic Splines”, Mathematical Notes, 67:5 (2000), 603–610 | DOI | MR | Zbl
[13] A. P. Petukhov, “Periodic discrete wavelets”, Algebra i Analiz, 8:3 (1996), 151–183
[14] M. A. Skopina, “Local convergence of Fourier series with respect to periodized wavelets”, J. Approxim. Theory, 94:2 (1998), 191–202 | DOI | MR | Zbl