Discrete periodic multiresolution analysis
Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 7-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete periodic multiresolution analysis. Multiresolution analyses in the space of discrete periodic complex-valued functions are studied. Characterization of a multiresolution analysis in terms of Fourier coefficients of functions that form a corresponding scaling sequence is obtained. An example of a multiresolution analysis with scaling sequence that consists of trigonometric polynomials with minimally supported spectrum is provided.
@article{ZNSL_2021_499_a1,
     author = {P. A. Andrianov},
     title = {Discrete periodic multiresolution analysis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {499},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a1/}
}
TY  - JOUR
AU  - P. A. Andrianov
TI  - Discrete periodic multiresolution analysis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2021
SP  - 7
EP  - 21
VL  - 499
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a1/
LA  - ru
ID  - ZNSL_2021_499_a1
ER  - 
%0 Journal Article
%A P. A. Andrianov
%T Discrete periodic multiresolution analysis
%J Zapiski Nauchnykh Seminarov POMI
%D 2021
%P 7-21
%V 499
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a1/
%G ru
%F ZNSL_2021_499_a1
P. A. Andrianov. Discrete periodic multiresolution analysis. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part I, Tome 499 (2021), pp. 7-21. http://geodesic.mathdoc.fr/item/ZNSL_2021_499_a1/