Multibranched surfaces in $3$-manifolds
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 135-156

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is a survey of recent works on embeddings of multibranched surfaces into $3$-manifolds.
@article{ZNSL_2020_498_a9,
     author = {M. Ozawa},
     title = {Multibranched surfaces in $3$-manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--156},
     publisher = {mathdoc},
     volume = {498},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/}
}
TY  - JOUR
AU  - M. Ozawa
TI  - Multibranched surfaces in $3$-manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 135
EP  - 156
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/
LA  - en
ID  - ZNSL_2020_498_a9
ER  - 
%0 Journal Article
%A M. Ozawa
%T Multibranched surfaces in $3$-manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 135-156
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/
%G en
%F ZNSL_2020_498_a9
M. Ozawa. Multibranched surfaces in $3$-manifolds. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 135-156. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/