Multibranched surfaces in $3$-manifolds
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 135-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article is a survey of recent works on embeddings of multibranched surfaces into $3$-manifolds.
@article{ZNSL_2020_498_a9,
     author = {M. Ozawa},
     title = {Multibranched surfaces in $3$-manifolds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--156},
     year = {2020},
     volume = {498},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/}
}
TY  - JOUR
AU  - M. Ozawa
TI  - Multibranched surfaces in $3$-manifolds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 135
EP  - 156
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/
LA  - en
ID  - ZNSL_2020_498_a9
ER  - 
%0 Journal Article
%A M. Ozawa
%T Multibranched surfaces in $3$-manifolds
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 135-156
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/
%G en
%F ZNSL_2020_498_a9
M. Ozawa. Multibranched surfaces in $3$-manifolds. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 135-156. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a9/

[1] J. Carmesin, Embedding simply connected $2$-complexes in $3$-space – I. A Kuratowski-type characterisation, 2017, arXiv: 1709.04642

[2] J. Carmesin, Embedding simply connected $2$-complexes in $3$-space – II. Rotation systems, 2017, arXiv: 1709.04643

[3] J. Carmesin, Embedding simply connected $2$-complexes in $3$-space – III. Constraint minors, 2017, arXiv: 1709.04645

[4] J. Carmesin, Embedding simply connected $2$-complexes in $3$-space – IV. Dual matroids, 2017, arXiv: 1709.04652

[5] J. Carmesin, Embedding simply connected $2$-complexes in $3$-space – V. A refined Kuratowski-type characterisation, 2017, arXiv: 1709.04659

[6] A. J. Casson, C. McA. Gordon, “Reducing Heegaard splittings”, Topology Appl., 27 (1987), 275–283 | DOI | MR | Zbl

[7] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978 | MR | Zbl

[8] K. Eto, S. Matsuzaki, M. Ozawa, “An obstruction to embedding $2$-dimensional complexes into the $3$-sphere”, Topology Appl., 198 (2016), 117–125 | DOI | MR | Zbl

[9] M. Eudave-Muñoz, “Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots”, Geometric Topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2, Amer. Math. Soc., Providence, RI, 1997, 35–61 | MR | Zbl

[10] M. Eudave-Muñoz, M. Ozawa, “Characterization of $3$-punctured spheres in non-hyperbolic link exteriors”, Topology Appl., 264 (2019), 300–312 | DOI | MR | Zbl

[11] M. Eudave-Muñoz, M. Ozawa, “The maximum and minimum genus of a multibranched surface”, Topology Appl (to appear)

[12] M. Eudave-Muñoz, E. Ramírez-Losada, L. G. Valdez-Sánchez, “On mutually disjoint, non parallel punctured tori in the exterior of hyperbolic knots”, 1st Pan Pacific International Conference on Topology and Applications (Min Nan Normal University, 2015)

[13] M. G. Fischer, L. de Campo, J. J. K. Kirkensgaard, S. T. Hyde, G. E. Schröder-Turk, “The tricontinuous $3$ths$(5)$ phase: A new morphology in copolymer $2$ melts”, Macromolecules, 47 (2014), 7424–7430 | DOI

[14] D. Gillman, “Generalising Kuratowski's theorem from $\mathbb{R}^2$ to $\mathbb{R}^4$”, Ars Combin., 23A (1987), 135–140 | MR | Zbl

[15] F. González-Acuña, “Sobre un artículo de J. Simon”, An. Inst. Mat. Univ. Nac. Autónoma México, 11 (1971), 43–54 | MR

[16] D. Gay, R. Kirby, “Trisecting $4$-manifolds”, Geom. Topol., 20 (2016), 3097–3132 | DOI | MR | Zbl

[17] J. C. Gómez-Larrañaga, F. González-Acuña, W. Heil, “$2$-Stratifolds”, A Mathematical Tribute to José María Montesinos Amilibia, Universidad Complutense de Madrid, 2016, 395–405 | MR

[18] J. C. Gómez-Larrañaga, F. González-Acuña, W. Heil, “$2$-Stratifold groups have solvable word problem”, Rev. Real Acad. Cienc. Exact. Fís. Nat. Ser. A Mat., 112 (2018), 803–810 | MR

[19] J. C. Gómez-Larrañaga, F. González-Acuña, W. Heil, “$2$-stratifold spines of closed $3$-manifolds”, Osaka J. Math., 57 (2020), 267–277 | MR

[20] F. González-Acuña, H. Short, “Knot surgery and primeness”, Math. Proc. Cambridge Philos. Soc., 99 (1986), 89–102 | DOI | MR | Zbl

[21] C. McA. Gordon, J. Luecke, “Only integral Dehn surgeries can yield reducible manifolds”, Math. Proc. Cambridge Philos. Soc., 102 (1987), 94–101 | MR

[22] C. McA. Gordon, J. Luecke, “Non-integral toroidal Dehn surgeries”, Comm. Anal. Geom., 12 (2004), 417–485 | DOI | MR | Zbl

[23] C. Hog-Angeloni, W. Metzeler, “Geometric aspects of two-dimensional complexes”, Two-Dimensional Homotopy and Combinatorial Group Theory, London Math. Soc. Lecture Note Ser., 197, 1993, 1–50 | MR | Zbl

[24] S. T. Hyde, L. de Campo, C. Oguey, “Tricontinuous mesophases of balanced three-arm ‘star polyphiles’”, Soft Matter, 5 (2009), 2782–2794 | DOI

[25] S. T. Hyde, G. E. Schröder-Turk, “Geometry of interfaces: topological complexity in biology and materials”, Interface Focus, 2 (2012), 529–538 | DOI

[26] K. Ishihara, Y. Koda, M. Ozawa, K. Shimokawa, “Neighborhood equivalence for multibranched surfaces in $3$-manifolds”, Topology Appl., 257 (2019), 11–21 | DOI | MR | Zbl

[27] Y. Koda, M. Ozawa, “Essential surfaces of non-negative Euler characteristic in genus two handlebody exteriors”, Trans. Amer. Math. Soc., 367 (2015), 2875–2904 | DOI | MR | Zbl

[28] D. Koenig, Trisections in three and four dimensions, Ph.D. Thesis, University of California, Davis, 2017 | MR | Zbl

[29] K. Kuratowski, “Sur le problème des courbes gauches en topologie”, Fund. Math., 15 (1930), 271–283 | DOI | Zbl

[30] J. Matous̆ek, E. Sedgwick, M. Tancer, U. Wagner, “Embeddability in the $3$-sphere is decidable”, Computational Geometry, SoCG'14, ACM, 2014, 78–84 | MR | Zbl

[31] S. Matsuzaki, M. Ozawa, “Genera and minors of multibranched surfaces”, Topology Appl., 230 (2017), 621–638 | DOI | MR | Zbl

[32] S. V. Matveev, “Transformations of special spines and the Zeeman conjecture”, Math. USSR-Izv., 31 (1988), 423–434 | DOI | MR | Zbl

[33] L. Nebeský, “A new characterization of the maximum genus of a graph”, Czechoslovak Math. J., 31 (1981), 604–613 | DOI | MR | Zbl

[34] M. Ozawa, “A partial order on multibranched surfaces in $3$-manifolds”, Topology Appl., 272 (2020), 107074 | DOI | MR | Zbl

[35] R. Piergallini, “Standard moves for standard polyhedra and spines”, Rend. Circ. Mat. Palermo (2) Suppl., 18 (1988), 391–414 | MR | Zbl

[36] D. Repovs̆, N. B. Brodskij, A. B. Skopenkov, “A classification of $3$-thickenings of $2$-polyhedra”, Topology Appl., 94 (1999), 307–314 | DOI | MR | Zbl

[37] N. Robertson, P. Seymour, “Graph minors. XX. Wagner's conjecture”, J. Combin. Theory Ser. B, 92 (2004), 325–357 | DOI | MR | Zbl

[38] J. H. Rubinstein, S. Tillmann, “Generalized trisections in all dimensions”, Proc. Natl. Acad. Sci. USA, 115 (2018), 10908–10913 | DOI | MR | Zbl

[39] M. Skopenkov, “Embedding products of graphs into Euclidean spaces”, Fund. Math., 179 (2003), 191–198 | DOI | MR | Zbl

[40] D. Tonkonog, “Embedding $3$-manifolds with boundary into closed $3$-manifolds”, Topology Appl., 158 (2011), 1157–1162 | DOI | MR | Zbl

[41] Y. Tsutsumi, “Universal bounds for genus one Seifert surfaces for hyperbolic knots and surgeries with non-trivial JSJT-decompositions”, Interdiscip. Inform. Sci., 9 (2003), 53–60 | MR | Zbl

[42] L. G. Valdez-Sánchez, “Seifert surfaces for genus one hyperbolic knots in the $3$-sphere”, Algebr. Geom. Topol., 19 (2019), 2151–2231 | DOI | MR | Zbl

[43] C. T. C. Wall, “All $3$-manifolds imbed in 5-space”, Bull. Amer. Math. Soc., 71 (1956), 564–567 | DOI | MR

[44] N. H. Xuong, “How to determine the maximum genus of a graph”, J. Combin. Theory Ser. B, 26 (1979), 217–225 | DOI | MR | Zbl