@article{ZNSL_2020_498_a8,
author = {V. R. Krym},
title = {The {Schouten} curvature and the {Jacobi} equation in {sub-Riemannian} geometry},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--134},
year = {2020},
volume = {498},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/}
}
V. R. Krym. The Schouten curvature and the Jacobi equation in sub-Riemannian geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/
[1] G. A. Bliss, Lectures on the Calculus of Variations, The University of Chicago Press, Chicago, 1963 | MR
[2] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy, geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki, ser. Sovr. probl. mat., fund. napr., 16, 1987, 5–85 | Zbl
[3] P. Ya. Grozman, D. A. Leites, “Negolonomnye tenzory Rimana i Veilya dlya flagovykh mnogoobrazii”, Teor. matem. fiz., 153:2 (2007), 186–219 | Zbl
[4] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, eds. A. Bella{\"i}che, J.-J. Risler, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl
[5] R. S. Strichartz, “Sub-Riemannian geometry”, J. Differ. Geom., 24 (1986), 221–263 | DOI | MR | Zbl
[6] W.-L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR
[7] P. K. Rashevskii, “Lyubye dve tochki vpolne negolonomnogo prostranstva mogut byt soedineny dopustimoi krivoi”, Uch. zap. Mosk. ped. in-ta im. Libknekhta, ser. fiz.-mat., 2 (1938), 83–94
[8] G. Vranceanu, “Parallelisme et courbure dans une variété non holonome”, Atti del Congresso Internazionale dei Matematici (Bologna, 1929), v. 5, 61–68
[9] G. Vranceanu, Les espaces non holonomes et leurs applications mécaniques, Gauthier-Villars, Paris, 1936
[10] J. A. Schouten, E. R. van Kampen, “Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl
[11] J. A. Schouten, W. van der Kulk, Pfaff's Problem and its Generalizations, Clarendon Press, Oxford, 1949 | MR | Zbl
[12] V. V. Vagner, Differentsialnaya geometriya negolonomnykh mnogoobrazii, Izd-vo Kazanskogo fiz.-mat. obsch., Kazan, 1939
[13] E. M. Gorbatenko, “Differentsialnaya geometriya negolonomnykh mnogoobrazii (po V.V. Vagneru)”, Geom. sb. Tomskogo un-ta, 26, 1985, 31–43
[14] V. R. Krym, N. N. Petrov, “Tenzor krivizny i uravneniya Einshteina dlya chetyrekhmernogo negolonomnogo raspredeleniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (2008), 68–80 | Zbl
[15] V. R. Krym, “Uravneniya geodezicheskikh dlya zaryazhennoi chastitsy v ob'edinennoi teorii gravitatsionnykh i elektromagnitnykh vzaimodeistvii”, Teor. matem. fiz., 119:3 (1999), 517–528 | MR | Zbl
[16] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dinamicheskie sistemy s neintegriruemymi svyazyami: vakonomnaya mekhanika, subrimanova geometriya i negolonomnaya mekhanika”, UMN, 72:5 (2017), 3–62 | MR | Zbl
[17] A. M. Vershik, L. D. Faddeev, “Differentsialnaya geometriya i lagranzheva mekhanika so svyazyami”, DAN SSSR, 202 (1972), 555–557 | Zbl
[18] A. M. Vershik, L. D. Faddeev, “Lagranzheva mekhanika v invariantom izlozhenii”, Problemy teoreticheskoi fiziki, v. 2, Izd-vo LGU, L., 1975 | MR
[19] A. M. Vershik, O. A. Granichina, “Reduktsiya negolonomnykh variatsionnykh zadach k izoperimetricheskim i svyaznosti v glavnykh rassloeniyakh”, Mat. zametki, 49:5 (1991), 37–44 | MR | Zbl
[20] A. M. Vershik, V. Ya. Gershkovich, “Geodezicheskii potok na SL$(2$,\({\mathbb{R}})\) s negolonomnymi ogranicheniyami”, Zap. nauchn. sem. LOMI, 155, 1986, 7–17 | Zbl
[21] V. N. Berestovskii, I. A. Zubareva, “Subrimanovo rasstoyanie v gruppe Li SL$(2)$”, Sib. matem. zhurn., 58:1 (2017), 22–35 | MR | Zbl
[22] V. R. Krym, “Negolonomnye geodezicheskie kak resheniya integralnykh uravnenii Eilera–Lagranzha i differentsial eksponentsialnogo otobrazheniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (2009), 31–40 | Zbl
[23] N. N. Petrov, “Suschestvovanie anormalnykh kratchaishikh geodezicheskikh v subrimanovoi geometrii”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (1993), 28–32 | Zbl
[24] R. Montgomery, “A survey of singular curves in sub-Riemannian geometry”, J. Dyn. Control Syst., 1:1 (1995), 49–90 | DOI | MR | Zbl
[25] R. Montgomery, “Book review of: A. Agrachev et al., A Comprehensive Introduction to Sub-Riemannian Geometry. From the Hamiltonian Viewpoint”, Bull. Amer. Math. Soc., New Ser., 57:4 (2020), 657–677 | DOI | MR | Zbl
[26] V. R. Krym, “Uravnenie Yakobi dlya gorizontalnykh geodezicheskikh na negolonomnom raspredelenii i tenzor krivizny Skhoutena”, Diff. ur. prots. upr., 3 (2018), 64–94 | Zbl
[27] V. R. Krym, “Polya Yakobi dlya negolonomnogo raspredeleniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 2010, no. 4, 51–61 | MR | Zbl