The Schouten curvature and the Jacobi equation in sub-Riemannian geometry
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 121-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show that if a distribution does not depend on the vertical coordinates, then the Schouten curvature tensor coincides with the Riemannian curvature. The Schouten curvature tensor and the nonholonomicity tensor are used to write the Jacobi equation for the distribution. This leads to a study of second-order optimality conditions for horizontal geodesics in sub-Riemannian geometry. We study conjugate points for horizontal geodesics on the Heisenberg group as an example.
@article{ZNSL_2020_498_a8,
     author = {V. R. Krym},
     title = {The {Schouten} curvature and the {Jacobi} equation in {sub-Riemannian} geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--134},
     year = {2020},
     volume = {498},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/}
}
TY  - JOUR
AU  - V. R. Krym
TI  - The Schouten curvature and the Jacobi equation in sub-Riemannian geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 121
EP  - 134
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/
LA  - ru
ID  - ZNSL_2020_498_a8
ER  - 
%0 Journal Article
%A V. R. Krym
%T The Schouten curvature and the Jacobi equation in sub-Riemannian geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 121-134
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/
%G ru
%F ZNSL_2020_498_a8
V. R. Krym. The Schouten curvature and the Jacobi equation in sub-Riemannian geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/

[1] G. A. Bliss, Lectures on the Calculus of Variations, The University of Chicago Press, Chicago, 1963 | MR

[2] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy, geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki, ser. Sovr. probl. mat., fund. napr., 16, 1987, 5–85 | Zbl

[3] P. Ya. Grozman, D. A. Leites, “Negolonomnye tenzory Rimana i Veilya dlya flagovykh mnogoobrazii”, Teor. matem. fiz., 153:2 (2007), 186–219 | Zbl

[4] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, eds. A. Bella{\"i}che, J.-J. Risler, Birkhäuser, Basel, 1996, 79–323 | DOI | MR | Zbl

[5] R. S. Strichartz, “Sub-Riemannian geometry”, J. Differ. Geom., 24 (1986), 221–263 | DOI | MR | Zbl

[6] W.-L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1939), 98–105 | MR

[7] P. K. Rashevskii, “Lyubye dve tochki vpolne negolonomnogo prostranstva mogut byt soedineny dopustimoi krivoi”, Uch. zap. Mosk. ped. in-ta im. Libknekhta, ser. fiz.-mat., 2 (1938), 83–94

[8] G. Vranceanu, “Parallelisme et courbure dans une variété non holonome”, Atti del Congresso Internazionale dei Matematici (Bologna, 1929), v. 5, 61–68

[9] G. Vranceanu, Les espaces non holonomes et leurs applications mécaniques, Gauthier-Villars, Paris, 1936

[10] J. A. Schouten, E. R. van Kampen, “Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl

[11] J. A. Schouten, W. van der Kulk, Pfaff's Problem and its Generalizations, Clarendon Press, Oxford, 1949 | MR | Zbl

[12] V. V. Vagner, Differentsialnaya geometriya negolonomnykh mnogoobrazii, Izd-vo Kazanskogo fiz.-mat. obsch., Kazan, 1939

[13] E. M. Gorbatenko, “Differentsialnaya geometriya negolonomnykh mnogoobrazii (po V.V. Vagneru)”, Geom. sb. Tomskogo un-ta, 26, 1985, 31–43

[14] V. R. Krym, N. N. Petrov, “Tenzor krivizny i uravneniya Einshteina dlya chetyrekhmernogo negolonomnogo raspredeleniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (2008), 68–80 | Zbl

[15] V. R. Krym, “Uravneniya geodezicheskikh dlya zaryazhennoi chastitsy v ob'edinennoi teorii gravitatsionnykh i elektromagnitnykh vzaimodeistvii”, Teor. matem. fiz., 119:3 (1999), 517–528 | MR | Zbl

[16] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dinamicheskie sistemy s neintegriruemymi svyazyami: vakonomnaya mekhanika, subrimanova geometriya i negolonomnaya mekhanika”, UMN, 72:5 (2017), 3–62 | MR | Zbl

[17] A. M. Vershik, L. D. Faddeev, “Differentsialnaya geometriya i lagranzheva mekhanika so svyazyami”, DAN SSSR, 202 (1972), 555–557 | Zbl

[18] A. M. Vershik, L. D. Faddeev, “Lagranzheva mekhanika v invariantom izlozhenii”, Problemy teoreticheskoi fiziki, v. 2, Izd-vo LGU, L., 1975 | MR

[19] A. M. Vershik, O. A. Granichina, “Reduktsiya negolonomnykh variatsionnykh zadach k izoperimetricheskim i svyaznosti v glavnykh rassloeniyakh”, Mat. zametki, 49:5 (1991), 37–44 | MR | Zbl

[20] A. M. Vershik, V. Ya. Gershkovich, “Geodezicheskii potok na SL$(2$,\({\mathbb{R}})\) s negolonomnymi ogranicheniyami”, Zap. nauchn. sem. LOMI, 155, 1986, 7–17 | Zbl

[21] V. N. Berestovskii, I. A. Zubareva, “Subrimanovo rasstoyanie v gruppe Li SL$(2)$”, Sib. matem. zhurn., 58:1 (2017), 22–35 | MR | Zbl

[22] V. R. Krym, “Negolonomnye geodezicheskie kak resheniya integralnykh uravnenii Eilera–Lagranzha i differentsial eksponentsialnogo otobrazheniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (2009), 31–40 | Zbl

[23] N. N. Petrov, “Suschestvovanie anormalnykh kratchaishikh geodezicheskikh v subrimanovoi geometrii”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (1993), 28–32 | Zbl

[24] R. Montgomery, “A survey of singular curves in sub-Riemannian geometry”, J. Dyn. Control Syst., 1:1 (1995), 49–90 | DOI | MR | Zbl

[25] R. Montgomery, “Book review of: A. Agrachev et al., A Comprehensive Introduction to Sub-Riemannian Geometry. From the Hamiltonian Viewpoint”, Bull. Amer. Math. Soc., New Ser., 57:4 (2020), 657–677 | DOI | MR | Zbl

[26] V. R. Krym, “Uravnenie Yakobi dlya gorizontalnykh geodezicheskikh na negolonomnom raspredelenii i tenzor krivizny Skhoutena”, Diff. ur. prots. upr., 3 (2018), 64–94 | Zbl

[27] V. R. Krym, “Polya Yakobi dlya negolonomnogo raspredeleniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 2010, no. 4, 51–61 | MR | Zbl