The Schouten curvature and the Jacobi equation in sub-Riemannian geometry
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 121-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if a distribution does not depend on the vertical coordinates, then the Schouten curvature tensor coincides with the Riemannian curvature. The Schouten curvature tensor and the nonholonomicity tensor are used to write the Jacobi equation for the distribution. This leads to a study of second-order optimality conditions for horizontal geodesics in sub-Riemannian geometry. We study conjugate points for horizontal geodesics on the Heisenberg group as an example.
@article{ZNSL_2020_498_a8,
     author = {V. R. Krym},
     title = {The {Schouten} curvature and the {Jacobi} equation in {sub-Riemannian} geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--134},
     publisher = {mathdoc},
     volume = {498},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/}
}
TY  - JOUR
AU  - V. R. Krym
TI  - The Schouten curvature and the Jacobi equation in sub-Riemannian geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 121
EP  - 134
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/
LA  - ru
ID  - ZNSL_2020_498_a8
ER  - 
%0 Journal Article
%A V. R. Krym
%T The Schouten curvature and the Jacobi equation in sub-Riemannian geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 121-134
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/
%G ru
%F ZNSL_2020_498_a8
V. R. Krym. The Schouten curvature and the Jacobi equation in sub-Riemannian geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 121-134. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a8/