Subexponential-time computation of isolated primary components of a polynomial ideal
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 64-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We suggest an algorithm for constructing all the isolated primary components of a given polynomial ideal. At the output, they are determined by systems of generators up to embedded components, and also as kernels of some homomorphisms. The complexity of this algorithm is subexponential in the size of the input data.
@article{ZNSL_2020_498_a5,
     author = {A. L. Chistov},
     title = {Subexponential-time computation of isolated primary components of a polynomial ideal},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {64--74},
     year = {2020},
     volume = {498},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a5/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Subexponential-time computation of isolated primary components of a polynomial ideal
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 64
EP  - 74
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a5/
LA  - ru
ID  - ZNSL_2020_498_a5
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Subexponential-time computation of isolated primary components of a polynomial ideal
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 64-74
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a5/
%G ru
%F ZNSL_2020_498_a5
A. L. Chistov. Subexponential-time computation of isolated primary components of a polynomial ideal. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 64-74. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a5/

[1] N. Burbaki, Kommutativnaya algebra, Mir, M., 1971

[2] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | Zbl

[3] A. L. Chistov, “Uluchshenie otsenki slozhnosti dlya resheniya sistem algebraicheskikh uravnenii”, Zap. nauchn. semin. POMI, 390, 2011, 299–306

[4] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. I”, Zap. nauchn. semin. POMI, 462, 2017, 122–166

[5] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. II”, Zap. nauchn. semin. POMI, 468, 2018, 138–176

[6] A. L. Chistov, “Sistemy s parametrami, ili effektivnoe reshenie sistem polinomialnykh uravnenii $33$ goda spustya. III”, Zap. nauchn. semin. POMI, 481, 2018, 146–177

[7] A. L. Chistov, “Neravenstva dlya funktsii Gilberta i primarnye razlozheniya”, Algebra i analiz, 19:6 (2007), 143–172

[8] A. L. Chistov, “Dvazhdy eksponentsialnaya nizhnyaya otsenka na stepen sistemy obrazuyuschikh polinomialnogo prostogo ideala”, Algebra i analiz, 20:6 (2008), 186–213 | MR

[9] W. Decker, G. M. Greuel, G. Pfister, “Primary decomposition: algorithms and comparisons”, Algorithmic Algebra and Number Theory, eds. B. H. Matzat, G. M. Greuel, G. Hiss, Springer, Berlin–Heidelberg, 1999, 187–220 | DOI | MR | Zbl

[10] G. Hermann, “Die Frage der endlich vielen Schritte in der Theorie der Polynomideale”, Math. Ann., 95 (1926), 736–788 | DOI | MR | Zbl

[11] E. Lasker, “Zur Theorie der Moduln und Ideale”, Math. Ann., 60 (1905), 19–116 | MR

[12] D. Lazard, “Résolution des systèmes d'équations algébriques”, Theoret. Comput. Sci., 15 (1981), 77–110 | DOI | MR | Zbl

[13] N. Masayuki, “New algorithms for computing primary decomposition of polynomial ideals”, Mathematical Software – ICMS 2010, Lect. Notes Comput. Sci., 6327, eds. K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama, Springer, Berlin–Heidelberg, 2010, 233–244 | DOI | MR | Zbl

[14] E. Noether, “Idealtheorie in Ringbereichen”, Math. Ann., 83:1 (1921), 24–66 | DOI | MR | Zbl

[15] V. Ortiz, “Sur une certaine décomposition canonique d'un idéal en intersection d'idéaux primaires dans un anneau noethérien commutatif”, C. R. Acad. Sci. Paris, 248 (1959), 3385–3387 | MR | Zbl

[16] A. Seidenberg, “Constructions in algebra”, Trans. Amer. Math. Soc., 197 (1974), 273–313 | DOI | MR | Zbl

[17] T. Shimoyama, K. Yokoyama, “Localization and primary decomposition of polynomial ideals”, J. Symbolic Comput., 22 (1996), 247–277 | DOI | MR | Zbl

[18] Y. Yao, “Primary decomposition: compatibility, independence and linear growth”, Proc. Amer. Math. Soc., 130:6 (2002), 1629–1637 | DOI | MR | Zbl