Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 55-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss some results and problems related to the Newton–Puiseux algorithm and its generalization for nonzero characteristic obtained by the author earlier. A new method is suggested for obtaining efficient estimates of the roots of a polynomial in the field of fractional power series in the case of arbitrary characteristic.
@article{ZNSL_2020_498_a4,
author = {A. L. Chistov},
title = {Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--63},
publisher = {mathdoc},
volume = {498},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/}
}
TY - JOUR AU - A. L. Chistov TI - Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 55 EP - 63 VL - 498 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/ LA - ru ID - ZNSL_2020_498_a4 ER -
%0 Journal Article %A A. L. Chistov %T Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 55-63 %V 498 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/ %G ru %F ZNSL_2020_498_a4
A. L. Chistov. Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 55-63. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/