Voir la notice du chapitre de livre
@article{ZNSL_2020_498_a4,
author = {A. L. Chistov},
title = {Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--63},
year = {2020},
volume = {498},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/}
}
TY - JOUR AU - A. L. Chistov TI - Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 55 EP - 63 VL - 498 UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/ LA - ru ID - ZNSL_2020_498_a4 ER -
A. L. Chistov. Efficient estimation of roots from the field of fractional power series of a given polynomial in nonzero characteristic. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 55-63. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a4/
[1] A. L. Chistov, “Rasshirenie algoritma Nyutona–Pyuize na sluchai nenulevoi kharakteristiki osnovnogo polya. I”, Algebra i analiz, 28:6 (2016), 147–188
[2] A. L. Chistov, “Polynomial complexity of the Newton–Puiseux algorithm”, International Symposium on Mathematical Foundations of Computer Science 1986, Lect. Notes Comput. Sci., 233, eds. J. Gruska, B. Rovan, J. Wiedermann, Springer, Berlin, 1986, 247–255 | DOI | MR
[3] A. L. Chistov, “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauchn. semin. LOMI, 137, 1984, 124–188 | Zbl
[4] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1964