Semifinite harmonic functions on the Gnedin–Kingman graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 38-54 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the Gnedin–Kingman graph, which corresponds to the Pieri rule for the monomial basis $\{M_{\lambda}\}$ in the algebra $\mathrm{QSym}$ of quasisymmetric functions. The paper contains a detailed announcement of results concerning the classification of indecomposable semifinite harmonic functions on the Gnedin–Kingman graph. For these functions, we also establish a multiplicativity property, which is an analog of the Vershik–Kerov ring theorem.
@article{ZNSL_2020_498_a3,
     author = {N. A. Safonkin},
     title = {Semifinite harmonic functions on the {Gnedin{\textendash}Kingman} graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--54},
     year = {2020},
     volume = {498},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a3/}
}
TY  - JOUR
AU  - N. A. Safonkin
TI  - Semifinite harmonic functions on the Gnedin–Kingman graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 38
EP  - 54
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a3/
LA  - ru
ID  - ZNSL_2020_498_a3
ER  - 
%0 Journal Article
%A N. A. Safonkin
%T Semifinite harmonic functions on the Gnedin–Kingman graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 38-54
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a3/
%G ru
%F ZNSL_2020_498_a3
N. A. Safonkin. Semifinite harmonic functions on the Gnedin–Kingman graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 38-54. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a3/

[1] A. V. Gnedin, “The representation of composition structures”, Ann. Probab., 25:3 (1997), 1437–1450 | DOI | MR | Zbl

[2] A. Gnedin, G. Olshanski, “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, Int. Math. Res. Not., 2006 (2006), 51968 | MR | Zbl

[3] M. V. Karev, P. P. Nikitin, “The boundary of the refined Kingman graph”, Zap. Nauchn. Semin. POMI, 468, 2018, 58–74 | MR

[4] S. V. Kerov, “Combinatorial examples in the theory of AF-algebras”, Zap. Nauchn. Semin. LOMI, 172, 1989, 55–67 | MR

[5] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and Its Applications in Analysis, Transl. Math. Monographs., 219, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[6] S. V. Kerov, A. M. Vershik, “The $K$-functor (Grothendieck group) of the infinite symmetric group”, Zap. Nauchn. Semin. LOMI, 123, 1983, 126–151 | MR | Zbl

[7] S. V. Kerov, A. M. Vershik, “Locally semisimple algebras. Combinatorial theory and the ${K}_0$-functor”, J. Sov. Math., 38:2 (1987), 1701–1733 | DOI | MR | Zbl

[8] S. Kerov, A. Vershik, “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory $K_0$-functor of AF-algebras”, Representation of Lie Ggroups and Related Topics, Adv. Stud. Contemp. Math., 7, eds. A. M. Vershik, D. P. Zhelobenko, 1990, 39–117 | MR | Zbl

[9] J. F. C. Kingman, “The representation of partition structures”, J. London Math. Soc. (2), 18 (1978), 374–380 | DOI | MR | Zbl

[10] K. Luoto, S. Mykytiuk, S. van Willigenburg, An Introduction to Quasisymmetric Schur Functions, Springer, New York, 2013 | MR | Zbl