The Hats game. The power of constructors
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 26-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We analyze the following general variant of the deterministic Hats game. Several sages wearing colored hats occupy the vertices of a graph. Each sage can have a hat of one of $k$ colors. Each sage tries to guess the color of his own hat merely on the basis of observing the hats of his neighbors without exchanging any information. A predetermined guessing strategy is winning if it guarantees at least one correct individual guess for every assignment of colors. We present an example of a planar graph for which the sages win for $k=14$. We also give an easy proof of the theorem about the Hats game on “windmill” graphs.
@article{ZNSL_2020_498_a2,
     author = {K. P. Kokhas and A. S. Latyshev},
     title = {The {Hats} game. {The} power of constructors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--37},
     year = {2020},
     volume = {498},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a2/}
}
TY  - JOUR
AU  - K. P. Kokhas
AU  - A. S. Latyshev
TI  - The Hats game. The power of constructors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 26
EP  - 37
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a2/
LA  - ru
ID  - ZNSL_2020_498_a2
ER  - 
%0 Journal Article
%A K. P. Kokhas
%A A. S. Latyshev
%T The Hats game. The power of constructors
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 26-37
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a2/
%G ru
%F ZNSL_2020_498_a2
K. P. Kokhas; A. S. Latyshev. The Hats game. The power of constructors. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 26-37. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a2/

[1] B. Bosek et al., Hat chromatic number of graphs, 2019, arXiv: 1905.04108v1

[2] X. He, Y. Ido, B. Przybocki, Hat guessing on books and windmills, 2020, arXiv: 2010.13249v1

[3] N. Alon, O. Ben-Eliezer, Ch. Shangguan, I. Tamo, “The hat guessing number of graphs”, J. Combin. Theory Ser. B, 2020 | MR

[4] W. W. Szczechla, “The three-colour hat guessing game on cycle graphs”, Electron. J. Combin., 24:1 (2017) | DOI | MR | Zbl

[5] K. P. Kokhas, A. S. Latyshev, “Na kakikh grafakh mudretsy mogut ugadat tsvet khotya by odnoi shlyapy”, Zap. nauchn. semin. POMI, 464, 2017, 48–76

[6] K. P. Kokhas, A. S. Latyshev, “Kliki i konstruktory v igre “Hats”. I”, Zap. nauchn. semin. POMI, 488, 2019, 66–96 | MR

[7] K. P. Kokhas, A. S. Latyshev, V. I. Retinskii, “Kliki i konstruktory v igre “Hats”. II”, Zap. nauchn. semin. POMI, 488, 2019, 97–118 | MR