The maximum pointwise rate of convergence in Birkhoff's ergodic theorem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 18-25
Voir la notice de l'article provenant de la source Math-Net.Ru
A criterion for the maximum possible pointwise convergence rate in Birkhoff's ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.
@article{ZNSL_2020_498_a1,
author = {A. G. Kachurovskii and I. V. Podvigin and A. A. Svishchev},
title = {The maximum pointwise rate of convergence in {Birkhoff's} ergodic theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {18--25},
publisher = {mathdoc},
volume = {498},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/}
}
TY - JOUR AU - A. G. Kachurovskii AU - I. V. Podvigin AU - A. A. Svishchev TI - The maximum pointwise rate of convergence in Birkhoff's ergodic theorem JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 18 EP - 25 VL - 498 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/ LA - ru ID - ZNSL_2020_498_a1 ER -
%0 Journal Article %A A. G. Kachurovskii %A I. V. Podvigin %A A. A. Svishchev %T The maximum pointwise rate of convergence in Birkhoff's ergodic theorem %J Zapiski Nauchnykh Seminarov POMI %D 2020 %P 18-25 %V 498 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/ %G ru %F ZNSL_2020_498_a1
A. G. Kachurovskii; I. V. Podvigin; A. A. Svishchev. The maximum pointwise rate of convergence in Birkhoff's ergodic theorem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 18-25. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/