The maximum pointwise rate of convergence in Birkhoff's ergodic theorem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 18-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the maximum possible pointwise convergence rate in Birkhoff's ergodic theorem for ergodic semiflows in a Lebesgue space is obtained. It is proved that higher rates of convergence in this theorem are impossible.
@article{ZNSL_2020_498_a1,
     author = {A. G. Kachurovskii and I. V. Podvigin and A. A. Svishchev},
     title = {The maximum pointwise rate of convergence in {Birkhoff's} ergodic theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--25},
     publisher = {mathdoc},
     volume = {498},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - I. V. Podvigin
AU  - A. A. Svishchev
TI  - The maximum pointwise rate of convergence in Birkhoff's ergodic theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 18
EP  - 25
VL  - 498
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/
LA  - ru
ID  - ZNSL_2020_498_a1
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A I. V. Podvigin
%A A. A. Svishchev
%T The maximum pointwise rate of convergence in Birkhoff's ergodic theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 18-25
%V 498
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/
%G ru
%F ZNSL_2020_498_a1
A. G. Kachurovskii; I. V. Podvigin; A. A. Svishchev. The maximum pointwise rate of convergence in Birkhoff's ergodic theorem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 18-25. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a1/