@article{ZNSL_2020_498_a0,
author = {G. A. Veprev},
title = {Scaling entropy of unstable systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--17},
year = {2020},
volume = {498},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a0/}
}
G. A. Veprev. Scaling entropy of unstable systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a0/
[1] A. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–185 | MR
[2] A. M. Vershik, “Scailing entropy and automorphisms with pure point spectrum”, St. Petersburg Math. J., 23:1 (2012), 75–91 | DOI | MR | Zbl
[3] A. Vershik, P. Zatitskiy, F. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl
[4] P. B. Zatitskiy, “Scaling entropy sequence: invariance and examples”, J. Math. Sci., 209:6 (2015), 890–909 | DOI | MR | Zbl
[5] P. B. Zatitskiy, F. V. Petrov, “On the subadditivity of a scaling entropy sequence”, J. Math. Sci., 215:6 (2016), 734–737 | DOI | MR
[6] P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence”, J. Math. Sci., 215:6 (2016), 715–733 | DOI | MR | Zbl
[7] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 187–207 | DOI | MR
[8] A. Katok, J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 323–338 | DOI | MR | Zbl