Scaling entropy of unstable systems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we study the slow entropy-type invariant of a dynamic system proposed by A. M. Vershik. We provide an explicit construction of a system that has an empty class of scaling entropy sequences. For this unstable case, we introduce an upgraded notion of the invariant, generalize the subadditivity results, and provide an exhaustive series of examples.
@article{ZNSL_2020_498_a0,
     author = {G. A. Veprev},
     title = {Scaling entropy of unstable systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--17},
     year = {2020},
     volume = {498},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a0/}
}
TY  - JOUR
AU  - G. A. Veprev
TI  - Scaling entropy of unstable systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 5
EP  - 17
VL  - 498
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a0/
LA  - en
ID  - ZNSL_2020_498_a0
ER  - 
%0 Journal Article
%A G. A. Veprev
%T Scaling entropy of unstable systems
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 5-17
%V 498
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a0/
%G en
%F ZNSL_2020_498_a0
G. A. Veprev. Scaling entropy of unstable systems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXI, Tome 498 (2020), pp. 5-17. http://geodesic.mathdoc.fr/item/ZNSL_2020_498_a0/

[1] A. Vershik, “Dynamics of metrics in measure spaces and their asymptotic invariants”, Markov Process. Related Fields, 16:1 (2010), 169–185 | MR

[2] A. M. Vershik, “Scailing entropy and automorphisms with pure point spectrum”, St. Petersburg Math. J., 23:1 (2012), 75–91 | DOI | MR | Zbl

[3] A. Vershik, P. Zatitskiy, F. Petrov, “Geometry and dynamics of admissible metrics in measure spaces”, Cent. Eur. J. Math., 11:3 (2013), 379–400 | MR | Zbl

[4] P. B. Zatitskiy, “Scaling entropy sequence: invariance and examples”, J. Math. Sci., 209:6 (2015), 890–909 | DOI | MR | Zbl

[5] P. B. Zatitskiy, F. V. Petrov, “On the subadditivity of a scaling entropy sequence”, J. Math. Sci., 215:6 (2016), 734–737 | DOI | MR

[6] P. B. Zatitskiy, “On the possible growth rate of a scaling entropy sequence”, J. Math. Sci., 215:6 (2016), 715–733 | DOI | MR | Zbl

[7] S. Ferenczi, “Measure-theoretic complexity of ergodic systems”, Israel J. Math., 100 (1997), 187–207 | DOI | MR

[8] A. Katok, J.-P. Thouvenot, “Slow entropy type invariants and smooth realization of commuting measure-preserving transformations”, Ann. Inst. H. Poincaré Probab. Statist., 33 (1997), 323–338 | DOI | MR | Zbl