Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 124-169
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic for the case when cut formulas may only contain essentially positive occurrences of the existential quantifier. We consider the cases of both proofs with and proofs without function symbols.
@article{ZNSL_2020_497_a5,
author = {V. P. Orevkov},
title = {Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--169},
publisher = {mathdoc},
volume = {497},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a5/}
}
TY - JOUR AU - V. P. Orevkov TI - Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 124 EP - 169 VL - 497 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a5/ LA - ru ID - ZNSL_2020_497_a5 ER -
V. P. Orevkov. Upper and lower bounds on the height of proofs in sequent calculus for intuitionistic logic. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 124-169. http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a5/