@article{ZNSL_2020_497_a4,
author = {V. O. Koval'},
title = {Partitioning of plane sets into $6$ subsets of small diameter},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {100--123},
year = {2020},
volume = {497},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a4/}
}
V. O. Koval'. Partitioning of plane sets into $6$ subsets of small diameter. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 100-123. http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a4/
[1] K. Borsuk, “Drei Sátze über die $n$-dimensional euklidische Sphäre”, Fundamenta Math., 20 (1933), 177–190 | DOI
[2] A. M. Raigorodskii, “Coloring Distance Graphs and Graphs of Diameters”, Thirty Essays on Geometric Graph Theory, ed. J. Pach, Springer, 2013, 429–460 | DOI | MR | Zbl
[3] A. M. Raigorodskii, “Cliques and cycles in distance graphs and graphs of diameters”, Discrete Geometry and Algebraic Combinatorics, Contemporary Mathematics, 625, AMS, 2014, 93–109 | DOI | MR | Zbl
[4] A. M. Raigorodskii, “Vokrug gipotezy Borsuka”, Itogi nauki i tekhniki. Seriya “Sovremennaya matematika”, 23, 2007, 147–164
[5] V. G. Boltyanski, H. Martini, P. S. Soltan, Excursions into combinatorial geometry, Universitext, Springer, Berlin, 1997 | DOI | MR | Zbl
[6] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer, 2005 | MR | Zbl
[7] H. Lenz, “Zerlegung ebener Bereiche in konvexe Zellen von möglichst kleinem Durchmesser”, Jber. Deutch. Math. Verein., 58 (1956), 87–97 | MR | Zbl
[8] H. Lenz, “Uber die Bedeckung ebenem Punktmengen durch solche kleineren Durchmessers”, Arch. Math. (Basel), 7:1 (1956), 34–40 | DOI | MR | Zbl
[9] V. P. Filimonov, “O pokrytii ploskikh mnozhestv”, Matematicheskii sbornik, 201:8 (2010), 127–160 | Zbl
[10] D. Belov, N. Aleksandrov, “O razbienii ploskikh mnozhestv na shest chastei malogo diametra”, TRUDY MFTI, 4:1 (2012), 77
[11] Proverka raschetov, https://github.com/VadymKoval/calculations-check.git
[12] V. P. Filimonov, “O pokrytii mnozhestv v $\mathbb{R}^m$”, Matem. sb., 205:8 (2014), 95–138 | MR | Zbl
[13] R. I. Prosanov, “Kontrprimery k gipoteze Borsuka, imeyuschie bolshoi obkhvat”, Matem. zametki, 105:6 (2019), 890–898 | MR | Zbl
[14] A. Kupavskii, A. Polyanskii, “Proof of Schur's conjecture in $\mathbb{R}^d$”, Combinatorica, 37:6 (2017), 1181–1205 | DOI | MR | Zbl
[15] A. Kupavskii, A. Polyanskii, “On simplices in diameter graphs in $\mathbb{R}^4$”, Mathematical Notes, 101:2 (2017), 232–246 | MR | Zbl
[16] A. M. Raigorodskii, L. I. Bogolyubskii, “Ob otsenkakh v probleme Borsuka”, Trudy MFTI, 11:3 (2019), 20–49