@article{ZNSL_2020_497_a3,
author = {D. V. Karpov},
title = {On semi-reconstruction of graphs of connectivity~$2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {80--99},
year = {2020},
volume = {497},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a3/}
}
D. V. Karpov. On semi-reconstruction of graphs of connectivity $2$. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 80-99. http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a3/
[1] P. J. Kelly, “A congruence theorem for trees”, Pacific J. Math., 7 (1957), 961–968 | DOI | MR | Zbl
[2] S. M. Ulam, A Collection of Mathematical Problems, Wiley, New York, 1960 | MR
[3] W. T. Tutte, Connectivity in Graphs, Univ. Toronto Press, Toronto, 1966 | MR | Zbl
[4] J. A. Bondy, “On Ulam's conjecture for separable graphs”, Pacific J. Math., 31 (1969), 281–288 | DOI | MR | Zbl
[5] Y. Yongzhi, “The reconstruction conjecture is true if all $2$-connected graphs are reconstructible”, J. Graph Theory, 12 (1988), 237–243 | DOI | MR | Zbl
[6] D. V. Karpov, A. V. Pastor, “$k$-connected graph”, J. Math. Sci., 113:4 (2003), 584–597 | DOI | MR
[7] D. V. Karpov, “Blocks in $k$-connected graphs”, J. Math. Sci., 126:3 (2005), 1167–1181 | DOI | MR
[8] D. V. Karpov, “Cutsets in a $k$-connected graph”, J. Math. Sci., 145:3 (2007), 4953–4966 | DOI | MR
[9] D. V. Karpov, “The Decomposition Tree of a Biconnected Graph”, J. Math. Sci., 204:2 (2015), 232–243 | DOI | MR | Zbl
[10] D. V. Karpov, “Minimal biconnected graphs”, J. Math. Sci., 204:2 (2015), 244–257 | DOI | MR | Zbl
[11] D. V. Karpov, “Decomposition of a $2$-connected graph into three connected subgraphs”, J. Math. Sci., 236:5 (2019), 490–502 | DOI | MR | Zbl
[12] D. V. Karpov, “Large contractible subgraphs of a $3$-connected graph”, Discussiones Mathematicae Graph Theory (to appear) | DOI | MR