Criterion for the existence of such a cycle that vertices beyond this cycle are independent
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 53-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper contains a criterion for the existence of such a cycle that the vertices beyond this cycle are independent in terms of minimum vertex degree. More specifically, if $G$ is a $2$-connected graph, $v(G) = n$ and $\delta(G) \geq \frac{n + 2}{3}$, then $G$ has a cycle such that vertices beyond this cycle are independent.
@article{ZNSL_2020_497_a2,
     author = {N. A. Karol'},
     title = {Criterion for the existence of such a cycle that vertices beyond this cycle are independent},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {53--79},
     year = {2020},
     volume = {497},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/}
}
TY  - JOUR
AU  - N. A. Karol'
TI  - Criterion for the existence of such a cycle that vertices beyond this cycle are independent
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 53
EP  - 79
VL  - 497
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/
LA  - ru
ID  - ZNSL_2020_497_a2
ER  - 
%0 Journal Article
%A N. A. Karol'
%T Criterion for the existence of such a cycle that vertices beyond this cycle are independent
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 53-79
%V 497
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/
%G ru
%F ZNSL_2020_497_a2
N. A. Karol'. Criterion for the existence of such a cycle that vertices beyond this cycle are independent. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 53-79. http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/

[1] J. A. Bondy, U. S. R. Murty, Graph Theory With Applications, Elsevier Science, 1976 | MR | Zbl

[2] R. Diestel, Graph Theory, izdaniya 1–5, Springer, 1997–2016 | MR | Zbl

[3] N. Linial, “A lower bound on the circumference of a graph”, Discrete Math., 15 (1976), 297–300 | DOI | MR | Zbl

[4] S. Thomassen, “A theorem on paths in planar graphs”, J. Graph Theory, 7 (1983), 169–176 | DOI | MR | Zbl