Criterion for the existence of such a cycle that vertices beyond this cycle are independent
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 53-79
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper contains a criterion for the existence of such a cycle that the vertices beyond this cycle are independent in terms of minimum vertex degree. More specifically, if $G$ is a $2$-connected graph, $v(G) = n$ and $\delta(G) \geq \frac{n + 2}{3}$, then $G$ has a cycle such that vertices beyond this cycle are independent.
@article{ZNSL_2020_497_a2,
author = {N. A. Karol'},
title = {Criterion for the existence of such a cycle that vertices beyond this cycle are independent},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {53--79},
publisher = {mathdoc},
volume = {497},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/}
}
TY - JOUR AU - N. A. Karol' TI - Criterion for the existence of such a cycle that vertices beyond this cycle are independent JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 53 EP - 79 VL - 497 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/ LA - ru ID - ZNSL_2020_497_a2 ER -
N. A. Karol'. Criterion for the existence of such a cycle that vertices beyond this cycle are independent. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 53-79. http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a2/