An exact bound on the number of proper $3$-edge-colorings of a connected cubic graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 26-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the problem of finding an upper bound on the number of proper edge $3$-colorings of a connected cubic graph with $2n$ vertices is explored. For this purpose, we extended Karpov's method which allowed to obtain a weaker result earlier. The bounds $2^n+8$ for even $n$ and $2^n+4$ for odd $n$ was proved. We have found the unique series of graphs on which these bounds are attained. Thus for, in this problem the exact upper bound has been found and proved.
@article{ZNSL_2020_497_a1,
     author = {M. P. Ivanov},
     title = {An exact bound on the number of proper $3$-edge-colorings of a connected cubic graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--52},
     year = {2020},
     volume = {497},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a1/}
}
TY  - JOUR
AU  - M. P. Ivanov
TI  - An exact bound on the number of proper $3$-edge-colorings of a connected cubic graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 26
EP  - 52
VL  - 497
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a1/
LA  - ru
ID  - ZNSL_2020_497_a1
ER  - 
%0 Journal Article
%A M. P. Ivanov
%T An exact bound on the number of proper $3$-edge-colorings of a connected cubic graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 26-52
%V 497
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a1/
%G ru
%F ZNSL_2020_497_a1
M. P. Ivanov. An exact bound on the number of proper $3$-edge-colorings of a connected cubic graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part XII, Tome 497 (2020), pp. 26-52. http://geodesic.mathdoc.fr/item/ZNSL_2020_497_a1/

[1] D. V. Karpov, “O pravilnykh 3-raskraskakh reber kubicheskogo grafa”, Zap. nauchn. semin. POMI, 488, 2019, 31–48

[2] N. J. A. Sloane (redaktor), The On-Line Encyclopedia of Integer Sequences, https://oeis.org