New two-sided bounds for the Perron root and related nonsingularity criteria
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 120-137
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			New general upper and lower bounds for the Perron root of a nonnegative matrix, which involve nonempty proper subsets of the index set and the matrix sparsity pattern, are suggested, and some special cases are considered. Also the nonsingularity criteria related to the upper bounds presented, which generalize some known results on subclasses of nonsingular $\mathcal{H}$-matrices, are derived.
			
            
            
            
          
        
      @article{ZNSL_2020_496_a9,
     author = {L. Yu. Kolotilina},
     title = {New two-sided bounds for the {Perron} root and related nonsingularity criteria},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--137},
     publisher = {mathdoc},
     volume = {496},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a9/}
}
                      
                      
                    L. Yu. Kolotilina. New two-sided bounds for the Perron root and related nonsingularity criteria. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 120-137. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a9/