New two-sided bounds for the Perron root and related nonsingularity criteria
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 120-137 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New general upper and lower bounds for the Perron root of a nonnegative matrix, which involve nonempty proper subsets of the index set and the matrix sparsity pattern, are suggested, and some special cases are considered. Also the nonsingularity criteria related to the upper bounds presented, which generalize some known results on subclasses of nonsingular $\mathcal{H}$-matrices, are derived.
@article{ZNSL_2020_496_a9,
     author = {L. Yu. Kolotilina},
     title = {New two-sided bounds for the {Perron} root and related nonsingularity criteria},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--137},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a9/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - New two-sided bounds for the Perron root and related nonsingularity criteria
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 120
EP  - 137
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a9/
LA  - ru
ID  - ZNSL_2020_496_a9
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T New two-sided bounds for the Perron root and related nonsingularity criteria
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 120-137
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a9/
%G ru
%F ZNSL_2020_496_a9
L. Yu. Kolotilina. New two-sided bounds for the Perron root and related nonsingularity criteria. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 120-137. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a9/

[1] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | Zbl

[2] L. Yu. Kolotilina, “Ob uluchshenii otsenok Chistyakova dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 346, 2007, 103–118

[3] L. Yu. Kolotilina, “O matritsakh Dashnitsa–Zusmanovicha (DZ) i matritsakh tipa Dashnitsa–Zusmanovicha (DZT) i ikh obratnykh”, Zap. nauchn. semin. POMI, 472, 2018, 145–165

[4] L. Yu. Kolotilina, “Ob odnom podklasse klassa nevyrozhdennykh $\mathcal{H}$-matrits i sootvetstvuyuschikh mnozhestvakh lokalizatsii sobstvennykh i singulyarnykh znachenii”, Zap. nauchn. semin. POMI, 472, 2018, 166–178

[5] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[6] A. Brauer, “Limits for the characteristic roots of a matrix: II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl

[7] A. Brauer, I. C. Gentry, “Bounds for the greatest characteristic root of an irreducible nonnegative matrix”, Linear Algebra Appl., 8 (1974), 105–107 | DOI | MR | Zbl

[8] G. Frobenius, “Über Matrizen aus nichtnegativen Elementen”, Sitzungsber. Kön. Preuss. Akad. Wiss. Berlin, 18 (1912), 465–477

[9] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl

[10] L. Yu. Kolotilina, “Bounds for the Perron root, singularity/nonsingularity conditions, and eigenvalue inclusion sets”, Numer. Algor., 42 (2006), 247–280 | DOI | MR | Zbl

[11] A. M. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR

[12] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl

[13] Jianxing Zhao, Qilong Liu, Chaoqian Li, Yaotang Li, “Dashnic–Zusmanovich type matrices: a new subclass of nonsingular H-matrices”, Linear Algebra Appl., 552 (2018), 277–287 | DOI | MR | Zbl