Voir la notice du chapitre de livre
@article{ZNSL_2020_496_a8,
author = {V. P. Il'in},
title = {Parallel changing triangular iterative methods in {Krylov} subspaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--119},
year = {2020},
volume = {496},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a8/}
}
V. P. Il'in. Parallel changing triangular iterative methods in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 104-119. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a8/
[1] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, Izd. SO RAN, Novosibirsk, 2017
[2] O. Axelsson, Iterative Solution Methods, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[3] V. P. Ilin, Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Nauka, M., 1995
[4] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM, 2003 | MR | Zbl
[5] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007
[6] J. Liesen, Z. Strakos, Krylov Subspace Methods, Principles and Analysis, Oxford University Press, 2013 | MR | Zbl
[7] M. A. Olshanskii, E. E. Tyrtyshnikov, Iterative Methods for Linear Systems Theory and Applications, SIAM, Philadelphia, 2014 | MR | Zbl
[8] V. P. Il'in, K. Yu. Laevsky, “Generalized compensation principle in incomplete factorization methods”, Russ. J. Numer. Anal. Math. Model, 12:5 (1997), 399–412 | MR
[9] R. Wang, Q. Niu, L. Lu, A weighted block tangential filtering decomposition preconditioner, Math. Prob. Engineering, 2009 | MR
[10] V. P. Ilin, Yu. I. Kuznetsov, Trekhdiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985 | MR
[11] J. R. Appleyard, I. M. Cheshire, R. K. Pollard, “Special techniques for fullyimplicit simulators”, Proc. European Symposium on Enhanced Oil Recovery Bournemouth, 1981, 395–408
[12] J. R. Appleyard, I. M. Cheshire, “Nested factorization”, Proc. Seventh SPE Symposium on Reservoir Simulation, 1983, 315–324
[13] N. N. Kuznetsova, O. V. Diyankov, S. V. Kotegov, I. V. Krasnogorov, V. Y. Pravilnikov, S. Y. Maliassov, “The family of nested factorizations”, RJNAMM, 22 (2007), 393–412 | MR | Zbl
[14] P. Kumar, L. Grigori, F. Nataf, Q. Nui, “On relaxed nested factorization and combination preconditioning”, Int. J. Comput. Math., 93:1 (2016), 178–199 | DOI | MR
[15] P. Kumar, L. Grigori, Q. Niu, F. Nataf, Fourier analysis of modified nested factorization preconditioner for three-dimensional isotropic problems, Res. Rep. INRIA-00448291, 2010
[16] Using ECLIPSE Parallel. Parallel computing, 2003 www.sis.slb.com/me-dia/about/whitepaper_parallelcomputing.pdf
[17] E. Graig, “The $n$-steps iterative procedures”, J. Math. Phys., 34 (1955), 64–73 | DOI | MR
[18] V. M. Fridman, “Metod minimalnykh iteratsii s minimalnymi oshibkami dlya sistemy lineinykh algebraicheskikh uravnenii s simmetrichnoi matritsei”, Zh. vychisl. matem. i matem. fiz., 2:2 (1962), 341–342 | MR | Zbl
[19] Yu. V. Vorobev, Metod momentom i prikladnoi matematike, Fizmatlit, M., 1958
[20] D. K. Faddeev, B. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR
[21] Y. Saad, M. Yeung, J. Erhel, F. Guyomarc-h, “A deflated version of conjugate gradient algorithm”, SIAM J. Sci. Comput., 24 (2000), 1909–1926 | DOI | MR
[22] L. Yu. Kolotilina, “Pereobuslavlivanie sistem lineinykh algebraicheskikh uravnenii s pomoschyu dvoinogo ischerpyvaniya. I. Teoriya”, Zap. nauchn. semin. POMI, 229, 1995, 95–152
[23] N. Venkovic, P. Mycek, L. Giraud, O. Le Maitre, Comparative study of harmonic and Rayleigh-Ritz procedures with applications for deflated conjugate gradients, Pressed Report Cerfacs, , 2020 hal-02434043