Parallel changing triangular iterative methods in Krylov subspaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 104-119
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers parallel preconditioned iterative methods in Krylov subspaces for solving large systems of linear algebraic equations with sparse symmetric positive-definite matrices arising in grid approximations of multidimensional problems. For preconditioning, generalized block algorithms of symmetric successive overrelaxation or incomplete factorization with matching row sums are used. Preconditioners are based on changing triangular matrix factors with multiple changes in the triangulation structure. In three-dimensional grid algebraic systems, methods are based on nested factorizations, as well as on two-level iterative processes. Successive approximations in Krylov subspaces are computed by applying a family of conjugate direction algorithms with various orthogonal and variational properties, including preconditioned conjugate gradient methods, conjugate residuals, and minimal errors.
@article{ZNSL_2020_496_a8,
     author = {V. P. Il'in},
     title = {Parallel changing triangular iterative methods in {Krylov} subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--119},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a8/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - Parallel changing triangular iterative methods in Krylov subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 104
EP  - 119
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a8/
LA  - ru
ID  - ZNSL_2020_496_a8
ER  - 
%0 Journal Article
%A V. P. Il'in
%T Parallel changing triangular iterative methods in Krylov subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 104-119
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a8/
%G ru
%F ZNSL_2020_496_a8
V. P. Il'in. Parallel changing triangular iterative methods in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 104-119. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a8/

[1] V. P. Ilin, Matematicheskoe modelirovanie, v. 1, Nepreryvnye i diskretnye modeli, Izd. SO RAN, Novosibirsk, 2017

[2] O. Axelsson, Iterative Solution Methods, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[3] V. P. Ilin, Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Nauka, M., 1995

[4] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn., SIAM, 2003 | MR | Zbl

[5] V. P. Ilin, Metody i tekhnologii konechnykh elementov, IVMiMG SO RAN, Novosibirsk, 2007

[6] J. Liesen, Z. Strakos, Krylov Subspace Methods, Principles and Analysis, Oxford University Press, 2013 | MR | Zbl

[7] M. A. Olshanskii, E. E. Tyrtyshnikov, Iterative Methods for Linear Systems Theory and Applications, SIAM, Philadelphia, 2014 | MR | Zbl

[8] V. P. Il'in, K. Yu. Laevsky, “Generalized compensation principle in incomplete factorization methods”, Russ. J. Numer. Anal. Math. Model, 12:5 (1997), 399–412 | MR

[9] R. Wang, Q. Niu, L. Lu, A weighted block tangential filtering decomposition preconditioner, Math. Prob. Engineering, 2009 | MR

[10] V. P. Ilin, Yu. I. Kuznetsov, Trekhdiagonalnye matritsy i ikh prilozheniya, Nauka, M., 1985 | MR

[11] J. R. Appleyard, I. M. Cheshire, R. K. Pollard, “Special techniques for fullyimplicit simulators”, Proc. European Symposium on Enhanced Oil Recovery Bournemouth, 1981, 395–408

[12] J. R. Appleyard, I. M. Cheshire, “Nested factorization”, Proc. Seventh SPE Symposium on Reservoir Simulation, 1983, 315–324

[13] N. N. Kuznetsova, O. V. Diyankov, S. V. Kotegov, I. V. Krasnogorov, V. Y. Pravilnikov, S. Y. Maliassov, “The family of nested factorizations”, RJNAMM, 22 (2007), 393–412 | MR | Zbl

[14] P. Kumar, L. Grigori, F. Nataf, Q. Nui, “On relaxed nested factorization and combination preconditioning”, Int. J. Comput. Math., 93:1 (2016), 178–199 | DOI | MR

[15] P. Kumar, L. Grigori, Q. Niu, F. Nataf, Fourier analysis of modified nested factorization preconditioner for three-dimensional isotropic problems, Res. Rep. INRIA-00448291, 2010

[16] Using ECLIPSE Parallel. Parallel computing, 2003 www.sis.slb.com/me-dia/about/whitepaper_parallelcomputing.pdf

[17] E. Graig, “The $n$-steps iterative procedures”, J. Math. Phys., 34 (1955), 64–73 | DOI | MR

[18] V. M. Fridman, “Metod minimalnykh iteratsii s minimalnymi oshibkami dlya sistemy lineinykh algebraicheskikh uravnenii s simmetrichnoi matritsei”, Zh. vychisl. matem. i matem. fiz., 2:2 (1962), 341–342 | MR | Zbl

[19] Yu. V. Vorobev, Metod momentom i prikladnoi matematike, Fizmatlit, M., 1958

[20] D. K. Faddeev, B. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR

[21] Y. Saad, M. Yeung, J. Erhel, F. Guyomarc-h, “A deflated version of conjugate gradient algorithm”, SIAM J. Sci. Comput., 24 (2000), 1909–1926 | DOI | MR

[22] L. Yu. Kolotilina, “Pereobuslavlivanie sistem lineinykh algebraicheskikh uravnenii s pomoschyu dvoinogo ischerpyvaniya. I. Teoriya”, Zap. nauchn. semin. POMI, 229, 1995, 95–152

[23] N. Venkovic, P. Mycek, L. Giraud, O. Le Maitre, Comparative study of harmonic and Rayleigh-Ritz procedures with applications for deflated conjugate gradients, Pressed Report Cerfacs, , 2020 hal-02434043