Specific features of cosquares of special matrices in indefinite metric spaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 101-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

As is known, the cosquare of an arbitrary nonsingular Hermitian matrix is the identity matrix, and the cosquare of an arbitrary unitary matrix is again unitary. In a complex linear space with the symplectic metric, symplectic and skew-Hamiltonian matrices are the counterparts of unitary and Hermitian matrices, respectively. Specific features of cosquares for these two matrix classes are indicated.
@article{ZNSL_2020_496_a7,
     author = {Kh. D. Ikramov},
     title = {Specific features of cosquares of special matrices in indefinite metric spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {101--103},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Specific features of cosquares of special matrices in indefinite metric spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 101
EP  - 103
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a7/
LA  - ru
ID  - ZNSL_2020_496_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Specific features of cosquares of special matrices in indefinite metric spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 101-103
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a7/
%G ru
%F ZNSL_2020_496_a7
Kh. D. Ikramov. Specific features of cosquares of special matrices in indefinite metric spaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 101-103. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a7/

[1] R. A. Horn, C. R. Johnson, Matrix Analysis, Second edition, Cambridge University Press, Cambridge, 2013 | MR | Zbl