The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 97-100

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every solution of the matrix equation in the title of the paper, where $n = 2m$, can be transformed by a symmetric permutation of rows and columns to the direct sum of two triangular Toeplitz matrices of order $m$.
@article{ZNSL_2020_496_a6,
     author = {Kh. D. Ikramov},
     title = {The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--100},
     publisher = {mathdoc},
     volume = {496},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 97
EP  - 100
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/
LA  - ru
ID  - ZNSL_2020_496_a6
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 97-100
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/
%G ru
%F ZNSL_2020_496_a6
Kh. D. Ikramov. The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 97-100. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/