The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 97-100
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that every solution of the matrix equation in the title of the paper, where $n = 2m$, can be transformed by a symmetric permutation of rows and columns to the direct sum of two triangular Toeplitz matrices of order $m$.
@article{ZNSL_2020_496_a6,
author = {Kh. D. Ikramov},
title = {The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {97--100},
year = {2020},
volume = {496},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/}
}
TY - JOUR
AU - Kh. D. Ikramov
TI - The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2020
SP - 97
EP - 100
VL - 496
UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/
LA - ru
ID - ZNSL_2020_496_a6
ER -
Kh. D. Ikramov. The structure of solutions of the matrix equation $J_n(0) Y + Y^{\mathsf{T}} J_n(0) = 0$ for even $n$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 97-100. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a6/