Congruence of unitary matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 94-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

C. R. Johnson and S. Furtado showed that if two unitary matrices are $*$-congruent, then they are unitarily similar. In this note, an analogous statement concerning another type of matrix congruence, namely, the T-congruence is proved. Additionally, the problem of checking the T-congruence of given matrices using only a finite number of arithmetic operations is discussed.
@article{ZNSL_2020_496_a5,
     author = {Kh. D. Ikramov},
     title = {Congruence of unitary matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--96},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Congruence of unitary matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 94
EP  - 96
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a5/
LA  - ru
ID  - ZNSL_2020_496_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Congruence of unitary matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 94-96
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a5/
%G ru
%F ZNSL_2020_496_a5
Kh. D. Ikramov. Congruence of unitary matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 94-96. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a5/

[1] C. R. Johnson, S. Furtado, “A generalization of Sylvester's law of inertia”, Linear Algebra Appl., 338 (2001), 287–290 | DOI | MR | Zbl

[2] R. A. Horn, C. R. Johnson, Matrix Analysis, Second Edition, Cambridge University Press, 2013 | MR | Zbl

[3] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1963 | MR