Congruence verification for involutive matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 87-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A finite computational process using only arithmetic operations is called a rational algorithm. Presently, no rational algorithm for checking the congruence of arbitrary complex matrices $A$ and $B$ is known. The situation may be different if both $A$ and $B$ belong to a special matrix class. For instance, there exist rational algorithms for the cases where both matrices are Hermitian, unitary, or accretive. In this publication, we propose a rational algorithm for checking the congruence of involutive matrices $A$ and $B$.
@article{ZNSL_2020_496_a4,
     author = {Kh. D. Ikramov},
     title = {Congruence verification for involutive matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--93},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Congruence verification for involutive matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 87
EP  - 93
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a4/
LA  - ru
ID  - ZNSL_2020_496_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Congruence verification for involutive matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 87-93
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a4/
%G ru
%F ZNSL_2020_496_a4
Kh. D. Ikramov. Congruence verification for involutive matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 87-93. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a4/

[1] Kh. D. Ikramov, “O konechnykh spektralnykh protsedurakh v lineinoi algebre”, Programmirovanie, 1994, no. 1, 56–69

[2] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2001

[3] Kh. D. Ikramov, “O proverke kongruentnosti akkretivnykh matrits”, Mat. zametki, 101 (2017), 854–859 | Zbl

[4] R. A. Horn, C. R. Johnson, Matrix Analysis, Second edition, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[5] R. A. Horn, V. V. Sergeichuk, “Canonical forms for complex matrices congruence and *congruence”, Linear Algebra Appl., 416 (2006), 1010–1032 | DOI | MR | Zbl

[6] Kh. D. Ikramov, Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984 | MR