@article{ZNSL_2020_496_a3,
author = {A. E. Guterman and S. A. Zhilina},
title = {Relation graphs of the sedenion algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {61--86},
year = {2020},
volume = {496},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a3/}
}
A. E. Guterman; S. A. Zhilina. Relation graphs of the sedenion algebra. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 61-86. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a3/
[1] J. C. Baez, “The Octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 145–205 | DOI | MR | Zbl
[2] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley-Dickson algebras”, Comm. Algebra, 36:2 (2008), 632–664 | DOI | MR | Zbl
[3] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley-Dickson algebras II”, Bol. Soc. Mat. Mex., 13:2 (2007), 269–292 | MR | Zbl
[4] H. C. Brown, Structure of zero divisors, and other algebraic structures, in higher dimensional real Cayley–Dickson algebras, Doct. Diss., 2088, 1972 | MR
[5] R. E. Cawagas, “On the structure and zero divisors of the Cayley–Dickson sedenion algebra”, Disc. Math. General Algebra Appl., 24 (2004), 251–265 | DOI | MR | Zbl
[6] K.-C. Chan, D. Ž. Ðoković, “Conjugacy classes of subalgebras of the real sedenions”, Canad. Math. Bull., 49 (2006), 492–507 | DOI | MR | Zbl
[7] P. Eakin, A. Sathaye, “On automorphisms and derivations of Cayley–Dickson algebras”, J. Algebra, 129:2 (1990), 263–278 | DOI | MR | Zbl
[8] A. E. Guterman, S. A. Zhilina, “Kontr-algebry Keli–Diksona: dvazhdy alternativnye deliteli nulya i grafy otnoshenii”, Fund. prikl. matem., 2020 (to appear)
[9] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauchn. semin. POMI, 472, 2018, 44–75
[10] S. H. Khalil, P. Yiu, “The Cayley-Dickson algebras, a theorem of A. Hurwitz, and quaternions”, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., 24 (1997), 117–169 | MR | Zbl
[11] R. P. C. de Marrais, The 42 assessors and the box-kites they fly: diagonal axis-pair systems of zero-divisors in the sedenions'16 dimensions, 2000, arXiv: math/0011260
[12] R. P. C. de Marrais, Flying higher than a box-kite: kite-chain middens, sand mandalas, and zero-divisor patterns in the $2^n$-ions beyond the sedenions, 2002, arXiv: math/0207003
[13] R. P. C. de Marrais, Box-kites III: Quizzical quaternions, mock octonions, and other zero-divisor-suppressing “sleeper cell” structures in the sedenions and $2^n$-ions, 2004, arXiv: math/0403113
[14] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl
[15] G. Moreno, “The zero divisors of the Cayley-Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex. (tercera serie), 4:1 (1998), 13–28 | MR | Zbl
[16] G. Moreno, “Alternative elements in the Cayley-Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plski, World Sci. Publ., Hackensack, New Jersey, 2006, 333–346 | DOI | MR | Zbl
[17] G. Moreno, Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517
[18] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl
[19] S. A. Zhilina, “Grafy otnoshenii algebry kontrsedenionov”, Zap. nauchn. semin. POMI, 482, 2019, 87–113
[20] S. A. Zhilina, “Orthogonality graphs of real Cayley–Dickson algebras. Part I: Doubly alternative zero divisors and their hexagons”, Int. J. Algebra Comput. (to appear)