Relation graphs of the sedenion algebra
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 61-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{S}$ denote the algebra of sedenions and let $\Gamma_O(\mathbb{S})$ denote its orthogonality graph. We observe that any pair of zero divisors in $\mathbb{S}$ produces a double hexagon in $\Gamma_O(\mathbb{S})$. The set of vertices of a double hexagon can be extended to a basis of $\mathbb{S}$ that has a convenient multiplication table. We explicitly describe the set of vertices of an arbitrary connected component of $\Gamma_O(\mathbb{S})$ and find its diameter. Then we establish a bijection between the connected components of $\Gamma_O(\mathbb{S})$ and the lines in the imaginary part of the octonions. Finally, we consider the commutativity graph of the sedenions and discover that all elements whose imaginary parts are zero divisors belong to the same connected component, and its diameter lies in between $3$ and $4$.
@article{ZNSL_2020_496_a3,
     author = {A. E. Guterman and S. A. Zhilina},
     title = {Relation graphs of the sedenion algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {61--86},
     publisher = {mathdoc},
     volume = {496},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a3/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - S. A. Zhilina
TI  - Relation graphs of the sedenion algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 61
EP  - 86
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a3/
LA  - ru
ID  - ZNSL_2020_496_a3
ER  - 
%0 Journal Article
%A A. E. Guterman
%A S. A. Zhilina
%T Relation graphs of the sedenion algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 61-86
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a3/
%G ru
%F ZNSL_2020_496_a3
A. E. Guterman; S. A. Zhilina. Relation graphs of the sedenion algebra. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 61-86. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a3/