Linear immanant converters on skew-symmetric matrices of order~$4$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 43-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $Q_n$ denote the space of all $n\times n$ skew-symmetric matrices over the complex field $\mathbb{C}$. It is proved that for $n = 4$, there are no linear maps $ T :Q_4\to Q_4$ satisfying the condition $ d_{\chi'} ( T (A) ) =d_{\chi} (A) $ for all matrices $ A\in Q_4$, where $\chi, \chi' \in \{1, \epsilon, [2,2]\}$ are two distinct irreducible characters of $S_4$. In the case $\chi=\chi'=1$, a complete characterization of the linear maps $T :Q_4\to Q_4$ preserving the permanent is obtained. This case is the only one corresponding to equal characters and remaining uninvestigated so far.
@article{ZNSL_2020_496_a2,
author = {A. E. Guterman and M. A. Duffner and I. A. Spiridonov},
title = {Linear immanant converters on skew-symmetric matrices of order~$4$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {43--60},
publisher = {mathdoc},
volume = {496},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/}
}
TY - JOUR AU - A. E. Guterman AU - M. A. Duffner AU - I. A. Spiridonov TI - Linear immanant converters on skew-symmetric matrices of order~$4$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 43 EP - 60 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/ LA - ru ID - ZNSL_2020_496_a2 ER -
A. E. Guterman; M. A. Duffner; I. A. Spiridonov. Linear immanant converters on skew-symmetric matrices of order~$4$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 43-60. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/