Linear immanant converters on skew-symmetric matrices of order~$4$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 43-60

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q_n$ denote the space of all $n\times n$ skew-symmetric matrices over the complex field $\mathbb{C}$. It is proved that for $n = 4$, there are no linear maps $ T :Q_4\to Q_4$ satisfying the condition $ d_{\chi'} ( T (A) ) =d_{\chi} (A) $ for all matrices $ A\in Q_4$, where $\chi, \chi' \in \{1, \epsilon, [2,2]\}$ are two distinct irreducible characters of $S_4$. In the case $\chi=\chi'=1$, a complete characterization of the linear maps $T :Q_4\to Q_4$ preserving the permanent is obtained. This case is the only one corresponding to equal characters and remaining uninvestigated so far.
@article{ZNSL_2020_496_a2,
     author = {A. E. Guterman and M. A. Duffner and I. A. Spiridonov},
     title = {Linear immanant converters on skew-symmetric matrices of order~$4$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--60},
     publisher = {mathdoc},
     volume = {496},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - M. A. Duffner
AU  - I. A. Spiridonov
TI  - Linear immanant converters on skew-symmetric matrices of order~$4$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 43
EP  - 60
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/
LA  - ru
ID  - ZNSL_2020_496_a2
ER  - 
%0 Journal Article
%A A. E. Guterman
%A M. A. Duffner
%A I. A. Spiridonov
%T Linear immanant converters on skew-symmetric matrices of order~$4$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 43-60
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/
%G ru
%F ZNSL_2020_496_a2
A. E. Guterman; M. A. Duffner; I. A. Spiridonov. Linear immanant converters on skew-symmetric matrices of order~$4$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 43-60. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/