Linear immanant converters on skew-symmetric matrices of order $4$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 43-60
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $Q_n$ denote the space of all $n\times n$ skew-symmetric matrices over the complex field $\mathbb{C}$. It is proved that for $n = 4$, there are no linear maps $ T :Q_4\to Q_4$ satisfying the condition $ d_{\chi'} ( T (A) ) =d_{\chi} (A) $ for all matrices $ A\in Q_4$, where $\chi, \chi' \in \{1, \epsilon, [2,2]\}$ are two distinct irreducible characters of $S_4$. In the case $\chi=\chi'=1$, a complete characterization of the linear maps $T :Q_4\to Q_4$ preserving the permanent is obtained. This case is the only one corresponding to equal characters and remaining uninvestigated so far.
@article{ZNSL_2020_496_a2,
     author = {A. E. Guterman and M. A. Duffner and I. A. Spiridonov},
     title = {Linear immanant converters on skew-symmetric matrices of order~$4$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--60},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - M. A. Duffner
AU  - I. A. Spiridonov
TI  - Linear immanant converters on skew-symmetric matrices of order $4$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 43
EP  - 60
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/
LA  - ru
ID  - ZNSL_2020_496_a2
ER  - 
%0 Journal Article
%A A. E. Guterman
%A M. A. Duffner
%A I. A. Spiridonov
%T Linear immanant converters on skew-symmetric matrices of order $4$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 43-60
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/
%G ru
%F ZNSL_2020_496_a2
A. E. Guterman; M. A. Duffner; I. A. Spiridonov. Linear immanant converters on skew-symmetric matrices of order $4$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 43-60. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a2/

[1] P. Botta, “Linear transformations that preserve the permanent”, Proc. Amer. Math. Soc., 18 (1967), 566–569 | DOI | MR | Zbl

[2] M. Budrevich, M. A. Duffner, A. E. Guterman, “Absence of linear permanent-determinant converters on skew-symmetric matrices”, Sarajevo J. Math., 14:27 (2018), 143–155 | MR | Zbl

[3] M. V. Budrevich, A. E. Guterman, M. A. Daffner, “Lineinye otobrazheniya kososimmetricheskikh matrits, sokhranyayuschie permanent”, Zap. nauchn. semin. POMI, 472, 2018, 31–43

[4] C. Cao, X. Tang, “Determinant preserving transformations on symmetric matrix spaces”, Electronic J. Linear Algebra, 11 (2004), 205–211 | DOI | MR | Zbl

[5] C. Cao, X. Tang, “Linear maps preserving rank $2$ on the space of alternate matrices and their applications”, Int. J. Math. Sci., 61–64 (2004), 3409–3417 | DOI | MR | Zbl

[6] M. P. Coelho, “Linear preservers of the permanent on symmetric matrices”, Linear Multilinear Algebra, 41 (1996), 1–8 | DOI | MR | Zbl

[7] M. P. Coelho, M. A. Duffner, “Immanant preserving and immanant converting maps”, Linear Algebra Appl., 418:1 (2006), 177–187 | DOI | MR | Zbl

[8] M. P. Coelho, M. A. Duffner, “Linear preservers of immanants on skew-symmetric matrices”, Linear Algebra Appl., 436 (2012), 2536–2553 | DOI | MR | Zbl

[9] M. P. Coelho, M. A. Duffner, “On the conversion of an immanant into another on symmetric matrices”, Linear Multilinear Algebra, 51:2 (2003), 137–145 | DOI | MR

[10] M. P. Coelho, M. A. Duffner, “Linear preservers of immanants on symmetric matrices”, Linear Algebra Appl., 255 (1997), 314–334 | MR

[11] M. P. Coelho, M. A. Duffner, A. E. Guterman, “Immanant conversion on symmetric matrices”, Special Matrices, 2:1 (2014), 1–10 | MR | Zbl

[12] G. Dolinar, P. Šemrl, “Determinant preserving maps on matrix algebras”, Linear Algebra Appl., 348 (2002), 189–192 | DOI | MR | Zbl

[13] G. Dolinar, A. Guterman, B. Kuzma, M. Orel, “On the Polya permanent problem over finite fields”, Eur. J. Comb., 32 (2011), 116–132 | DOI | MR | Zbl

[14] M. A. Duffner, “Linear transformations that preserve immanants”, Linear Algebra Appl., 197–198 (1994), 567–588 | DOI | MR | Zbl

[15] M. P. Coelho, M. A. Duffner, “On the conversion of an immanant into another”, Linear Multilinear Algebra, 44 (1998), 111–130 | DOI | MR | Zbl

[16] M. A. Duffner, A. E. Guterman, “Converting immanants on singular symmetric matrices”, Lobachevskii J. Math., 38:4 (2017), 630–636 | DOI | MR | Zbl

[17] M. A. Duffner, A. E. Guterman, I. A. Spiridonov, Converting immanants on skew-symmetric matrices, Preprint, 2020 | MR

[18] G. Frobenius, “Über die Darstellung der endlichen Gruppen durch lineare Substitutionen”, Sitzungsber. Preuss. Akad. Wiss., Berlin, 1897, 994–1015 | Zbl

[19] B. Kuzma, “Ob otobrazheniyakh, sokhranyayuschikh immananty”, Fundam. prikl. matem., 13:4 (2007), 113–120

[20] C.-K. Li, N.-K. Tsing, “Linear preserver problems$:$ A brief introduction and some special techniques. Directions in matrix theory”, Linear Algebra Appl., 162–164 (1992), 217–235 | MR | Zbl

[21] M. H. Lim, H. Ong, “Linear transformations on symmetric matrices that preserve the permanent”, Linear Algebra Appl., 21 (1978), 143–151 | DOI | MR | Zbl

[22] M. Marcus, F. C. May, “The permanent function”, Canad. J. Math., 14 (1962), 177–189 | DOI | MR | Zbl

[23] M. Marcus, H. Minc, “On the relation between the determinant and the permanent”, Illinois J. Math., 5:3 (1961), 376–381 | DOI | MR | Zbl

[24] H. Minc, Permanents, Addison Wesley Publ. Co, 1978 | MR | Zbl

[25] S. Pierce and others, “A survey of linear preserver problems”, Linear Multilinear Algebra, 33 (1992), 1–119 | DOI | MR | Zbl

[26] G. Pólya, “Aufgabe, 424”, Arch. Math. Phys, 20:3 (1913), 271

[27] H. J. Ryser, Combinatorial Mathematics, Math. Assoc. Amer., 1963 | MR | Zbl