Converting column majorization
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 195-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper characterizes linear operators converting column majorization into weak, directional, and strong majorizations. An example of a linear converter from weak, directional, and strong majorizations to column majorization preserving none of these majorizations is provided.
@article{ZNSL_2020_496_a14,
     author = {P. M. Shteyner},
     title = {Converting column majorization},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--215},
     year = {2020},
     volume = {496},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a14/}
}
TY  - JOUR
AU  - P. M. Shteyner
TI  - Converting column majorization
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 195
EP  - 215
VL  - 496
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a14/
LA  - ru
ID  - ZNSL_2020_496_a14
ER  - 
%0 Journal Article
%A P. M. Shteyner
%T Converting column majorization
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 195-215
%V 496
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a14/
%G ru
%F ZNSL_2020_496_a14
P. M. Shteyner. Converting column majorization. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 195-215. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a14/

[1] T. Ando, “Majorization, doubly stochastic matrices, and comparison of eigenvalues”, Linear Algebra Appl., 118 (1989), 163–248 | DOI | MR | Zbl

[2] L. B. Beasley, S.-G. Lee, Y.-H. Lee, “A characterization of strong preservers of matrix majorization”, Linear Algebra Appl., 367 (2003), 341–346 | DOI | MR | Zbl

[3] L. B. Beasley, S.-G. Lee, “Linear operators preserving multivariate majorization”, Linear Algebra Appl., 304:1 (2000), 141–159 | DOI | MR | Zbl

[4] R. A. Brualdi, G. Dahl, “Majorization-constrained doubly stochastic matrices”, Linear Algebra Appl., 361 (2003), 75–97 | DOI | MR | Zbl

[5] R. A. Brualdi, G. Dahl, “Majorization classes of integral matrices”, Linear Algebra Appl., 436 (2012), 802–813 | DOI | MR | Zbl

[6] G. Dahl, “Matrix majorization”, Linear Algebra Appl., 288 (1999), 53–73 | DOI | MR | Zbl

[7] G. Dahl, “Majorization polytopes”, Linear Algebra Appl., 297 (1999), 157–175 | DOI | MR | Zbl

[8] G. Dahl, “Transportation matrices with staircase patterns and majorization”, Linear Algebra Appl., 429:7 (2008), 1840–1850 | DOI | MR | Zbl

[9] G. Dahl, A. Guterman, P. Shteyner, “Majorization for matrix classes”, Linear Algebra Appl., 555 (2018), 201–221 | DOI | MR | Zbl

[10] G. Dahl, A. Guterman, P. Shteyner, “Majorization for $(0,1)$-matrices”, Linear Algebra Appl., 585 (2020), 147–163 | DOI | MR | Zbl

[11] J. Dieudonné, “Sur une généralisation du groupe orthogonal à quatre variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR | Zbl

[12] G. Frobenius, “Uber die darstellung der endlichen gruppen durch linear substitutionen”, Sitzungsber Deutsch. Akad. Wiss. Berlin, 1897, 994–1015 | Zbl

[13] G. Gour, D. Jennings, F. Buscemi, R. Duan, I. Marvian, “Quantum majorization and a complete set of entropic conditions for quantum thermodynamics”, Nature Comm., 9 (2018) | DOI

[14] A. E. Guterman, P. M. Shteiner, “Lineinye otobrazheniya, sokhranyayuschie mazhorizatsiyu naborov matrits”, Vestnik SPbGU, Matematika. Mekhanika. Astronomiya, 7(65) (2020), 217–229 | Zbl

[15] A. Guterman, P. Shteyner, “Linear converters of weak, directional and strong majorizations”, Linear Algebra Appl., 1–21 (to appear) | MR | Zbl

[16] A. M. Hasani, M. Radjabalipour, “On linear preservers of (right) matrix majorization”, Linear Algebra Appl., 423 (2007), 255–261 | DOI | MR | Zbl

[17] A. M. Hasani, M. Radjabalipour, “Linear preserver of matrix majorization”, Int. J. Pure Appl. Math., 32:4 (2006), 475–482 | MR | Zbl

[18] G. Koshevoy, “Multivariate Lorenz majorization”, Soc. Choice Welfare, 12:1 (1995), 93–102 | DOI | MR | Zbl

[19] G. Koshevoy, “The Lorenz zonotope and multivariate majorizations”, Soc. Choice Welfare, 15:1 (1997), 1–14 | DOI | MR

[20] C.-K. Li, S. Pierce, “Linear preserver problems”, Amer. Math. Monthly, 108:7 (2001), 591–605 | DOI | MR | Zbl

[21] C.-K. Li, E. Poon, “Linear operators preserving directional majorization”, Linear Algebra Appl., 325:1 (2001), 141–146 | MR | Zbl

[22] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, second edition, Springer, New York, 2011 | MR | Zbl

[23] F. D. Martinez Peria, P. G. Massey, L. E. Silvestre, “Weak matrix majorization”, Linear Algebra Appl., 403 (2005), 343–368 | DOI | MR | Zbl

[24] S. Pierce et al, “A survey of linear preserver problems”, Linear Multilinear Algebra, 33:1–2 (1992), 1–119 | MR | Zbl

[25] M. Radjabalipour, P. Torabian, “On nonlinear preservers of weak matrix majorization”, Bull. Iran. Math. Soc., 32:2 (2011), 21–30 | MR

[26] I. Schur, “Einige bemerkungen zur determinantentheorie”, Akad. Wiss., Berlin, 1925, 454–463 | Zbl

[27] E. Torgersen, “Stochastic orders and comparison of experiments”, Lect. Notes Monograph Ser., 19, 1991, 334–371 | DOI | MR | Zbl