The length of the group algebra of the dihedral group of order $2^k$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 169-181

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the length of the group algebra of a dihedral group in the modular case is computed under the assumption that the order of the group is a power of two. Various methods for studying the length of a group algebra in the modular case are considered. It is proved that the length of the group algebra of a dihedral group of order $2^{k+1} $ over an arbitrary field of characteristic $2$ is equal to $2^{k}$.
@article{ZNSL_2020_496_a12,
     author = {O. V. Markova and M. A. Khrystik},
     title = {The length of the group algebra of the dihedral group of order $2^k$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {496},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/}
}
TY  - JOUR
AU  - O. V. Markova
AU  - M. A. Khrystik
TI  - The length of the group algebra of the dihedral group of order $2^k$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2020
SP  - 169
EP  - 181
VL  - 496
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/
LA  - ru
ID  - ZNSL_2020_496_a12
ER  - 
%0 Journal Article
%A O. V. Markova
%A M. A. Khrystik
%T The length of the group algebra of the dihedral group of order $2^k$
%J Zapiski Nauchnykh Seminarov POMI
%D 2020
%P 169-181
%V 496
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/
%G ru
%F ZNSL_2020_496_a12
O. V. Markova; M. A. Khrystik. The length of the group algebra of the dihedral group of order $2^k$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 169-181. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/