The length of the group algebra of the dihedral group of order $2^k$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 169-181
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the length of the group algebra of a dihedral group in the modular case is computed under the assumption that the order of the group is a power of two. Various methods for studying the length of a group algebra in the modular case are considered. It is proved that the length of the group algebra of a dihedral group of order $2^{k+1} $ over an arbitrary field of characteristic $2$ is equal to $2^{k}$.
@article{ZNSL_2020_496_a12,
author = {O. V. Markova and M. A. Khrystik},
title = {The length of the group algebra of the dihedral group of order $2^k$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {169--181},
publisher = {mathdoc},
volume = {496},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/}
}
TY - JOUR AU - O. V. Markova AU - M. A. Khrystik TI - The length of the group algebra of the dihedral group of order $2^k$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2020 SP - 169 EP - 181 VL - 496 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/ LA - ru ID - ZNSL_2020_496_a12 ER -
O. V. Markova; M. A. Khrystik. The length of the group algebra of the dihedral group of order $2^k$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXIII, Tome 496 (2020), pp. 169-181. http://geodesic.mathdoc.fr/item/ZNSL_2020_496_a12/